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ABSTRACT 

Sometimes clinical trials collect survival data, which have some variables measured 

longitudinally. This type of data is mostly analyzed using Cox proportional models 

with time dependent covariates. The longitudinal variables are treated as time 

dependent covariates. When there is association between a longitudinal variable and 

the time to event, estimates produced from separate models may be biased. The study 

uses Cox proportional models with time dependent covariates for survival data and 

linear mixed effects regression models for the longitudinal data. For the joint analysis, 

the joint modeling between repeated measurement and time to an event is used. The 

method is applied to data from a randomized clinical trial for the malnourished HIV 

positive patients who were on ART at Queen Elizabeth Central Hospital. One group 

received corn soya blend (CSB) and other group received ready to use therapeutic 

food (RUTF). Results from joint modeling showed that there is significant association 

between body mass index (BMI) and time to death of a patient, p < 0.001. Both joint 

model and Cox proportional model with time dependent covariates showed that the 

type of food did not have significant effect on the time to death of patients. 

Hemoglobin levels, sex of patient and use cotrimoxazole were significantly associated 

with time to death of malnourished HIV positive patients. It was also observed that 

some variables which were not significant in the separate models became significant 

in the joint model. This shows the importance of using joint models. Joint modeling of 

longitudinal and survival data gives unbiased estimates. 
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CHAPTER 1 INTRODUCTION 

 

This chapter introduces and states the problem being researched and explains why this 

topic was chosen and how data was collected. 

 

1.1 Background 

Clinical trials sometimes collect survival data. Survival data is defined as data, which 

its response of interest is time until some event occurs (Kalbfleisch & Prentince, 

2002). Survival analysis is a statistical method used to analyze data when the outcome 

of interest is time to occurrence of an event. Survival analysis is also called time to 

event analysis. In medical field, time to event can be time until recurrence of tumor in 

a cancer study, time to death after surgery, or time until infection (Kalbfleisch & 

Prentince, 2002; Collet, 2003). 

 

Standard statistical techniques cannot usually be applied to analyze survival data 

because the underlying distribution is rarely normal and the data is often censored 

(Bewick et al., 2004). A variable is said to be censored when there is a follow up time 

but the event has not yet occurred or is not known to have occurred (Bewick et al., 

2004; Kalbfleisch & Prentince, 2002). 

 

In clinical trials, longitudinal data are collected.  Repeated measurement variables, 

which are variables collected repeatedly over a long period of time are analyzed using 

longitudinal data methods. There are several methods, which are used to analyze 
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longitudinal data. Some of them are univariate analysis of variance (ANOVA), 

multivariate analysis of variance (MANOVA), mixed effects regression models 

(MRM), covariance pattern models (CPM) and generalized estimating equations 

(GEE).   

 

Several methods also exist for analyzing survival data. Among them are non 

parametric, semi parametric and parametric methods. Many textbooks have been 

written in order to address survival data analysis. These books include: Kalbfleisch and 

Prentince (2002), Collet (2003) and Machin, Cheung and Parmar (2006).  

Kaplan and Meier (1958) proposed a non parametric method that is widely used as a 

starting point in the field of survival data analysis.  Non-parametric methods are 

suited for the homogeneous samples.  

 

Another method used to analyze survival is Cox proportional hazard model. The Cox 

proportional hazards model, which was proposed by Cox (1972), is now the most 

widely used approach for the analysis of survival data (Hosmer & Lemeshow, 1999). 

Despite the Cox proportional hazard model being the most widely used, in some 

situations, it may not be the appropriate method to use especially when proportion 

hazards (PH) assumptions do not hold. The extensions of Cox PH models such as 

stratified Cox model and Cox model with time dependent variables can be used for 

the analysis of survival data when PH assumptions fail to hold.   

 

Survival data with baseline covariates and repeated measurements covariates can be 

analyzed using Cox proportional model with time dependent covariates (Collet, 

2003). Effects of repeated measurements on the time to an event are assessed by 
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treating the repeated measurement as a time dependent covariate in a survival model 

(Nguti, Burzykowski, Rowlands & Janssen, 2005).  The problems associated with this 

modeling approach were well described by Tsiatis, Degruttola and Wulfsohn (1995). 

If there is association between the repeated measurements data and time to an event, 

for example time to death, Cox model with time dependent models may not be 

appropriate approach of modeling this type of data (Nguti et al., 2005; McCrink, 

Marshall & Cairns, 2011). Time dependent covariates Cox models produce biased 

estimates when there is association between time to an event and repeated 

measurement variables (Nguti et al., 2005). In that case, joint modeling of survival 

and repeated measurement data becomes a better approach to use. Joint modeling of 

survival and longitudinal data may be used to analyze data, when both repeated 

measurements and time to an event are collected and these variables are associated. 

These two processes, namely repeated measurements and time to event, are associated 

through unobserved random effects (Tsiatis et al., 1995; McCrink et al., 2011). When 

there is an association between repeated measurements and time to an event, joint 

modeling gives better results (Henderson et al., 2000; Ibrahim, Chu & Chen, 2010). In 

fact Ibrahim et al. (2010) has demonstrated that joint modeling can improve the 

accuracy of the estimation for parameters in both models when the longitudinal 

measurements and survival times are highly correlated. In particular, Little and Rubin 

(2002) reported that joint modeling produces smaller standard error of estimates.  

With accurate estimates of parameters, the right conclusion on the effect of repeated 

measurement covariates on the survival of the individual can be made (McCrink et al., 

2011). Nguti et al., (2005) reported that estimates from separate analysis (i.e.  survival 

model and longitudinal data model) have been shown to be biased towards zero, thus 
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showing over estimated hazard ratios, and this bias can be reduced by using joint 

models. 

 

Diggle, Sousa and Chetwynd (2008) reported several advantages of joint modeling of 

the repeated measurement and the time-to-event processes. They reported that the 

repeated measurements can be extrapolated from observed measurement times to the 

specific event time in a way that utilizes the entire measurement history. They also 

reported that the time to the event is allowed to depend on the true but unknown value 

of the repeated measurement, thus making adjustment of measurement error. This in 

turn leads to reduced bias of the parameter estimates of the Cox model. Also the 

repeated measurement process is adjusted for any loss of information arising from 

death or loss of individuals. When there is no association between longitudinal 

repeated measurements and event to survival, joint modeling reduces to separate 

survival data and longitudinal data methods (McCrink et al., 2011). 

 

This study used secondary data that was collected in 2006. In the study, malnourished 

adults HIV positive patients were given one of the two food supplements (CSB or 

RUTF). Time to death of malnourished HIV positive patient receiving ART was the 

event of interest. However, weights of patients were also collected longitudinally. It is 

likely that body mass index (BMI) was associated to time of death of a malnourished 

HIV positive person.  

 

Zechariah et al. (2006) reported in their paper entitled “Risk factors for high early 

mortality in patients on ART in rural district of Malawi” that many HIV infected 

patients in Malawi died within the first 3 months after the initiation of antiretroviral 
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therapy (ART). The aim of the study was to find factors associated with time to death 

of malnourished HIV positive patients receiving ART, but also to assess factors 

associated with the longitudinally collected body mass index (BMI). In adults, BMI is 

a measure used to indicate whether a person was underweight or not.  

 

The data for this study was collected from the randomized clinical trial. In the clinical 

trial, data was collected from malnourished HIV positive at Queen Elizabeth Central 

Hospital in Blantyre, Malawi. Nutritional support in terms of food supplements were 

given to the patients. Nutritional support was identified as one of the most immediate 

and critical needs for patients living with HIV/AIDS (Manary et al., 2010; Ndekha et 

al., 2009). 

 

1.2 Statement of the Problem 

Wasting is a major problem in sub Saharan African among adults with advanced HIV 

infection and the prevalence of wasting ranges from 20% to 40% (Dannhauser et al., 

1999; Van der Sande et al., 2004). Wasting is normally the result of inadequate 

nutrient intake because of anorexia, food insecurity associated with poverty, catabolic 

state induced by opportunistic infection or malignancy, or poor absorption of nutrients 

secondary to diarrhoea and malabsorption (Ndekha et al., 2009). Wasting is one of the 

risk factors of death among adults with advanced HIV infection in Sub Sahara. In 

Malawi, supplementary feeding together with treatment is advocated as the standard 

care of wasted adults with HIV in Malawi (Ndekha et al., 2009). 

 

Corn soya blends (CSB) and ready to use fortified spreads (RUTF) are some of the 

supplementary foods given to HIV patients who are malnourished and receiving 



6 
 

antiretroviral therapy. Studies have shown than RUTF resulted in greater increase in 

BMI as compared to CSB (Manary et al., 2010; Ndekha et al., 2009). However it is 

not clear if RUTF and CSB have effect on the time to death of malnourished HIV 

infected patients who are on ART.  Zachariah et al. (2006) reported that in Malawi 

mortality during the first 3 months of antiretroviral therapy is high, and a low BMI is 

associated with this early mortality. There is a need to assess the effects of CSB and 

RUTF on the time to death of malnourished HIV infected patients who are on ART. 

 

When the aim of the study is to assess the effects of the repeated measurements on 

time to death of patient, Cox models with time dependent covariates are used (Sousa, 

2011; Nguti et al., 2005). The effect of repeated measurements on the time to death 

has been assessed by treating the repeated measurement as a time dependent covariate 

in a survival model (Nguti et al., 2005). The effects of other covariates on the 

outcome variable such as body mass index have been analyzed using mixed effect 

regression model. The survival component and the longitudinal data components have 

been analyzed separately. It is therefore necessary to analyze survival data and 

longitudinal data simultaneously using joint models because there is association 

between lower body mass index and time to death of a patient (Manary et al., 2010; 

Zechariah et al., 2006). Joint modeling takes care of this association. 

 

1.3 General Objective 

The purpose of this study is to compare the results from joint and separate models for 

the repeated measurements and time to death for the malnourished HIV positive 

patients who are receiving antiretroviral therapy (ART) at Queen Elizabeth Central 

Hospital in Malawi. 
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1.3.1 Specific Objectives 

 To model the effects of CSB and RUTF on the time to death of 

malnourished HIV infected patients who are on ART. 

 To assess the relationship between body mass index (BMI) and time to 

death in malnourished HIV positive patients. 

 To model jointly the body mass index and time to death for the 

malnourished HIV infected patients who are on ART. 

 To model separately the repeated measurements and time to an event data. 

 To compare the estimates from models produced by separate methods and 

joint modelling methods. 

 

1.4 Significance of Study 

Analysis of survival and longitudinal data poses a challenge when there is an 

association between time to an event variable and the repeated measurement variable. 

Using time dependent Cox model to analyze survival data with longitudinal variable 

may give biased results especially when there is association between the time to an 

event of interest and longitudinal variable. The statistical approach (joint modeling) 

used in this paper reduces bias and produces smaller standard errors (Henderson et al., 

2000).  

 

This paper will help to add knowledge in the field of nutrition especially among 

malnourished HIV positive patients. Few studies in the field of nutrition have used 

joint modeling of survival and longitudinal data approach. Therefore, this paper 

intends to add to the available work in the modeling of survival data when there is 

association between the survival event and repeated measurement data. 
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1.5 Structure of the thesis 

 

This thesis is structured as follows: Chapter 2 reviewed literature on methods used to 

analyze survival data, longitudinal data and joint modeling. The methodology for this 

thesis is presented in chapter 3. Results for survival model, longitudinal model and 

joint modeling are presented in chapter 4. Discussion of results is presented in 

Chapter 5. Finally chapter 6 gives conclusions and recommendations. 
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CHAPTER 2 LITERATURE REVIEW 

 

 

This chapter gives the literature review of survival analysis, longitudinal data analysis 

and joint modeling 

.  

2.1 Longitudinal Data Model 

 

The longitudinal data are measurements collected repeatedly over a period of time 

from the same individual. The purpose of a longitudinal study is to show the effect or 

change of outcome variable over time and the factors which influence the change. In 

the subsequent sections, the common approaches for handling longitudinal data are 

reviewed. These include repeated measures ANOVA, MANOVA, mixed effects 

regression models and generalized estimating equations. This section uses information 

from the following books: Hedeker and Gibbons (2006), Faraway (2006) and Diggle, 

Heagerty, Liang and Zeger (2002).  

 

2.1.1 Repeated Measure Analysis of Variance (ANOVA)   

Repeated measure of analysis of variance (ANOVA) is the approach used to provide 

analysis of complete data. It works by regarding time as a factor on n levels in a 

hierarchical design with units as sub plots (Diggle et al., 2002). Diggle et al. (2002) 

described repeated measure ANOVA in the following way: 

Consider the following model 

             𝑦𝑕𝑖𝑗 = 𝛽𝑕 + 𝛾𝑕𝑗 + 𝑈𝑕𝑖 + 𝑍𝑕𝑖𝑗                                                                  2.1.1                                                         

where 𝑦𝑕𝑖𝑗  denotes 𝑗𝑡𝑕 observation from the 𝑖𝑡𝑕 unit within the 𝑕𝑡𝑕 treatment group;   



10 
 

𝑗 = 1,2, … , 𝑛;    𝑖 = 1,2, … . ,𝑚𝑕 ; 𝑕 = 1,2, … . , 𝑔. The term 𝛽𝑕  represents main effects 

for treatments and  𝛾𝑕𝑗  is an interaction between treatments and time with constraints 

that  𝛾𝑕𝑗 = 0𝑛
𝑗=1 , for all h.  In equation 2.1.1,  𝑈𝑕𝑖  and 𝑍𝑕𝑖𝑗  are mutually independent 

random effects for units and measurement error respectively, 𝐸(𝑌𝑕𝑖𝑗 ) = 𝛽𝑕 + 𝛾𝑕𝑗 . 

Assuming that both 𝑈𝑕𝑖  and 𝑍𝑕𝑖𝑗  are normally distributed with zero mean and 

variance 𝑣2 𝑎𝑛𝑑 𝜍2  respectively, then 𝑌𝑕𝑖 = 𝑌𝑕𝑖1, … . , 𝑌𝑕𝑖𝑛  is multivariate normal, 

which has  𝑉 = 𝑣2𝐼 +  𝜍2𝐽 as its covariance matrix, where I is identity matrix and J is 

a matrix all of whose elements are I. The model has constant correlation  𝜌 =
𝑣2

𝑣2+𝜍2
, 

between any two observations on the same unit. 

 

ANOVA requires that the data must be balanced. In addition to this, ANOVA makes 

an assumption of sphericity.  Rabe-Hesketh and Skrondal (2008) defined sphericity as 

the assumption that all pair-wise differences between responses have the same 

variance. The assumption of sphericity is rarely met when analyzing longitudinal data. 

Because of this ANOVA is limited in its application. When the assumption of 

sphericity is violated, it can lead to skewed F-distributions. The advantage of 

ANOVA is that it takes into account the fact that subjects can have individual baseline 

observations but no subject-specific evolution in time. When they are missing data, 

ANOVA uses observations which have complete data only (Hedeker & Gibbons, 

2006). 

 

2.1.2 Multivariate Analysis of Variance (MANOVA) 

Multivariate analysis of variance (MANOVA) is another approach used to analyze 

longitudinal datasets and has similar restrictions as the univariate ANOVA described 

above. This method treats the n repeated measurements as n x1 response variable. The 
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usual approach involves transforming observations into orthogonal polynomial 

coefficients. For one sample MANOVA, let 𝑦𝑖 = 𝑢 + 𝜀𝑖  ,   𝑦𝑖   is an 𝑛 𝑥1 response 

vector for the n repeated measurements, 𝑢 is  an 𝑛 𝑥1 mean vector for time points, 

𝜀𝑖  is an 𝑛 𝑥1 vector of errors and 𝜀𝑖~𝑁 0, Σ ,  𝑦𝑖  is normally distributed with mean 

𝜇 and variance Σ. Under univaraite approach  Σ = σn
2 1n1′n + σe

2In   and 𝑢 = 𝑢1 +  𝜏. 

MANOVA does not handle missing values in data and in addition it assumes the 

variables to be measured at the same occasions. It is therefore not suitable for 

longitudinal datasets with non-responses (Hedeker & Gibbons, 2006). 

 

2.1.3 Mixed Effects Regression Model (MRM) 

Another approach used to analyze longitudinal data is the mixed regression models 

(MRM). This approach can be used for both categorical, continuous and count data. 

MRM gives unbiased results if missing data are assumed ignorable i.e. missing 

completely at random and missing at random. MRM allows the measurement 

occasions to vary among the individuals. The method handles both time invariant and 

time varying variables and is therefore a suitable method to analyze longitudinal data 

with non responses. When dependent or outcome variable is continuous and normally 

distributed, the MRM is referred as the linear mixed effects regression model. The 

linear mixed effects regression model approach is an extension to a class of regression 

models called generalized linear mixed effects regression models that is often useful 

for outcomes such as binary, count and ordinal data. The disadvantage of MRM is that 

the full-likelihood methods are more computationally complex than quasi-likelihood 

methods (Davis, 2002; Nakai & Ke, 2011). 
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2.1.3.1 Linear Mixed Effects Regression Model 

Repeated measurements continuous outcome can be modeled using a linear mixed 

effects regression model (Hedeker & Gibbons, 2006; Molenberghs & Verbeke, 2005). 

The procedure is detailed below using the notations of Molenberghs and Verbeke 

(2005) and Hedeker and Gibbons (2006). 

 

For any repeated measurement variable, for example body mass index (BMI), which 

is continuous variable. Let 𝑌𝑖𝑗  represent the jth measurement of repeated measurement 

variable for example body mass index for the 𝑖𝑡𝑕 subject collected at time 𝑤𝑖𝑗  for 

𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2, … , 𝑝𝑖  . Total number of subject interviewed is n, and  𝑝𝑖   is 

number of body mass index measurements collected from subject 𝑖 .     

Consider   𝑌𝑖
𝑇 =  (𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑝 ), in which 𝑌𝑖1 is the first measurement for subject 𝑖. 

It follows that    𝑌𝑖 = 𝑋1𝑖𝛽𝑀 + 𝑄𝑖𝑟𝑖 + 𝜀𝑖                                                                          2.1.2 

The term 𝑋1𝑖 is a 𝑝 𝑥 𝑠 design matrix, 𝑄𝑖  is a 𝑝 𝑥 𝑡 design matrix and  𝛽𝑀   is an 𝑠 𝑥 1 

vector containing fixed effects. Random effects were depicted by  𝑟𝑖  , which is a 𝑡 𝑥 1. 

The term 𝑟𝑖   follows a normal distribution,  𝑁(0, 𝐺) and  𝑟𝑖  has a mean of zero and its 

variance covariance matrix 𝐺 = [𝑣𝑏𝑐]. In this case 𝑣𝑏𝑐 = 𝐶𝑜𝑣(𝑟𝑖𝑏 ,𝑟𝑖𝑐), 𝜀𝑖  is a residual 

error vector. An assumption that 𝑟𝑖  is independent of 𝜀𝑖  can be made. The residual 

errors have normal distribution with mean zero and its variance covariance is 𝑉𝑖  . 

Nguti et al (2005) argues that 𝑌𝑖  is marginally normally distributed with 𝑋1𝑖𝛽𝑀 and its 

variance covariance is 

𝐹𝑖 = 𝑄𝑖𝐺𝑄𝑖
𝑇 + 𝑉𝑖                                                                                                   2.1.3 

The linear mixed effect regression model has random and fixed effects. In equation 

2.1.2, fixed effects were represented by  𝑋1𝑖𝛽𝑀  and random effects by 𝑄𝑖𝑟𝑖  . 

Variability within subjects is taken care by the term  𝛽𝑀 . Variability between subjects 
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is modeled using random effects 𝑟𝑖 . Linear mixed regression model can have either 

random intercept only, random intercept and slope or quadratic.  

 

2.1.4 Generalized linear models 

Generalized linear models (GLM) are applied when analyzing univariate discrete 

outcome variables, via known variances and link functions. Generalized linear models 

have three components. These are random component, systematic component, and 

link between the random and systematic components (Davis, 2002). The random 

component identifies the response variable y and assumes a specific probability 

distribution for 𝑦   and the probability distribution belongs to exponential family 

(Davis, 2002). 

 

For longitudinal data, the GLM is not sufficient to model discrete responses because 

of the dependency between observations within subjects. There are 3 main extensions 

of generalized linear models. These include marginal models, mixed effects models 

and transitional models. This section describes the extensions of GLM as discussed by 

Davis (2002). 

 

2.1.4.1 Marginal Models 

Let  𝑦𝑖𝑗  stands for the response at time j from subject i. Marginal expectation        

𝜇𝑖𝑗 = 𝐸(𝑦𝑖𝑗  )  is modeled as a function of explanatory variables. The marginal 

expectation is the average response over the sub population that shares a common 

value of the covariate vector. Note that, this is what is modeled in a cross sectional 

study. Associations among repeated observations are modeled separately from the 
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marginal mean and variance of the response vector. The assumptions can be outlined 

as follows: 

1. The marginal expectation 𝜇𝑖𝑗  is related to the covariates through a known link 

function g: 

𝑔(𝜇𝑖𝑗 ) = 𝑥′𝑖𝑗𝛽𝑖  , where 𝑥′𝑖𝑗 = 𝑥𝑖𝑗 1 , … , 𝑥𝑖𝑗𝑝  is a vector of covariates specific to 

subject 𝑖 at time 𝑗 and 𝛽 is a 𝑝 ×  1 vector of regression parameters. 

2. The marginal variance of 𝑦𝑖𝑗  is related to the marginal expectation 𝜇𝑖𝑗  

through 𝑉𝑎𝑟(𝑦𝑖𝑗 =  ∅𝑉(𝜇𝑖𝑗 ), where V is a known variance function and ∅ is a 

possibly unknown scale parameter. 

3. The covariance between 𝑦𝑖𝑗   and 𝑦′𝑖𝑗  is a known function of 𝜇𝑖𝑗 , 𝜇′𝑖𝑗 , and a 

vector of unknown parameters 𝛼. 

 

2.1.4.2 Random Effects Models 

In random effects models, heterogeneity between individuals arising from 

unmeasured variables is accounted for by including subject specific random effects in 

the model. These random effects are assumed to account for all of the within subject 

correlation present in the data. Conditional on the values of the random effects, the 

responses are assumed to be independent. 

The assumptions can be outlined as follows: 

1. Given a vector 𝑏𝑖 of subject-specific effects for the 𝑖𝑡𝑕 subject, the conditional 

mean of 𝑦𝑖𝑗    satisfies the model 𝑔 𝐸 𝑦𝑖𝑗  𝑏𝑖  = 𝑥′𝑖𝑗𝛽 + 𝑧′𝑖𝑗 𝑏𝑖 , where g is a 

known link function and 𝑧𝑖𝑗  is a vector of covariates for subject 𝑖 at time 𝑗. 

2. 𝑦𝑖1, … , 𝑦𝑖𝑡𝑖  are independent given 𝑏𝑖  for each 𝑖 =  1, . . . , 𝑛. 

3. 𝑏1, … , 𝑏𝑛  are independent and identically distributed with probability density 

function 𝑓. 



15 
 

 

2.1.4.3 Transition Models 

In transition models for the analysis of repeated measurements, the observations 

𝑦𝑖1, … , 𝑦𝑖𝑡𝑖  from subject 𝑖 are correlated because 𝑦𝑖𝑗   is explicitly influenced by the 

past values  𝑦𝑖1, … , 𝑦𝑖,𝑗−1 . The past outcomes are treated as additional predictor 

variables. The conditional expectation of the current response, given the past 

responses, is assumed to follow a generalized linear model. The linear predictor 

component of the model includes the original covariates as well as additional 

covariates that are known functions of past responses. 

Thus, the general form of the model is 

          𝑔 𝐸 𝑦𝑖𝑗  𝑦𝑖1, … , 𝑦𝑖,𝑗−1  = 𝑥′𝑖𝑗𝛽 +  𝛼1𝑓𝑟
𝑠
𝑟=1 (𝑦𝑖1, … , 𝑦𝑖,𝑗−1; 𝛼1, … , 𝛼𝑠)  2.1.4 

Where𝑓1 , … , 𝑓𝑠  are functions of previous observations and possibly of an unknown 

parameter vector 𝛼 = (𝛼1, … , 𝛼𝑠). In addition, the conditional variance of 𝑦𝑖𝑗  given 

the past is proportional to a known function of the conditional mean i.e. 

𝑉𝑎𝑟 𝑦𝑖𝑗  𝑦𝑖1, … , 𝑦𝑖,𝑗−1 =  ∅𝑉 𝐸 𝑦𝑖𝑗  𝑦𝑖1, … , 𝑦𝑖,𝑗−1  ,  where V is a known variance 

function and ∅ is an unknown scale parameter (Diggle et al., 2002). 

 

2.1.4.5 Generalized Estimating Equations (GEE) 

Generalized estimation equations (GEE) were proposed by Liang and Zeger (1986) 

based on concept of estimating equations. Generalized estimating equations (GEE) 

are generalization of generalized linear models (GLM). GEE support many different 

types of dependent variables. The method was developed to cater for categorical and 

counts responses, and can also be used to analyze continuous data (Diggle et al., 

2002; Hedeker & Gibbon, 2006).  
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Let 𝑌𝑖 = (𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑝 )  be a vector of correlated responses for 𝑖𝑡𝑕  subject,             

𝑖 = 1,2, … , 𝑛. 

Marginal expectation of response,  𝐸 𝑌𝑖𝑗  = 𝜇𝑖𝑗 ,  and this depends on explanatory 

variable 𝑋𝑖𝑗  through a known link function, 𝑔(𝜇𝑖𝑗 ) =  𝜂𝑖𝑗 = 𝑋𝑖𝑗  𝛽. Marginal variance 

of 𝑌𝑖𝑗  depends on marginal mean according to 𝑣𝑎𝑟 𝑌𝑖𝑗  = 𝑣(𝜇𝑖𝑗 )𝜙, where 𝑣(𝜇𝑖𝑗 ) is 

known and 𝜙 may have to be estimated. Correlation between 𝑌𝑖𝑗  and 𝑌𝑖𝑘  is function of 

some additional parameter 𝛼, may also depend on 𝜇𝑖𝑗  and 𝜇𝑖𝑘 . 

Estimate of 𝛽  can be obtained as solution to the following generalized estimating 

equations   𝐷𝑖
′𝑉𝑖

−1 𝑌𝑖 − 𝜇𝑖 = 0𝑛
𝑖=1  , where 𝐷𝑖 =

𝑑(𝜇 𝑖)

𝑑𝛽
 and 𝑉𝑖  is working covariance 

matrix, that is 𝑉𝑖 =  𝐶𝑜𝑣(𝑌𝑖), 𝐷𝑖  is a function of 𝛽, 𝑉𝑖  is a function of both 𝛽 𝑎𝑛𝑑 𝛼. 

Iterative two stage estimation procedure is required for generalized estimation 

equation. 

1. Given current estimates of 𝛼 𝑎𝑛𝑑 𝜙, an estimate of 𝛽 is obtained as solution to 

the GEE. 

2. Given current estimate of , estimate of  𝛽 𝑎𝑛𝑑 𝜙  are obtained based on 

standardized residuals 𝑟𝑖𝑗 =  𝑌𝑖𝑗 − 𝜇 𝑖𝑗  v𝜇 𝑖𝑗
1

2                        2.1.5 

 If estimates of 𝛼 𝑎𝑛𝑑 𝜙 are consistent, then the solution of generalized estimating 

equations  𝛽  has following properties: 

1.  𝛽  is consistent estimator of 𝛽. 

2. In large samples 𝛽  has a multivariate normal distribution. 

3. 𝐶𝑜𝑣(
^

 )  = 𝐹−1𝐺𝐹−1 , where 𝐹 =  𝐷𝑖
,𝑉𝑖

−1𝐷𝑖
𝑛
𝑖=1 , 

𝐺 =  𝐷𝑖
,𝑉𝑖

−1𝑐𝑜𝑣(𝑌𝑖)𝑉𝑖
−1𝐷𝑖

𝑛
𝑖=1  

Marginal distribution of  𝑌𝑖𝑗  at each time point has to be specified. The GEE treated 

variance-covariance structure as a nuisance. In the GEE, unobserved variables are 
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dependent only on the covariates, as the result of this, the missing data structure for 

GEE is the covariate-dependent MCAR. Therefore GEE does not automatically 

provide unbiased estimates of parameters when data is missing at random (MAR). 

Some weighting will need to be done to obtain unbiased estimates (Lipsitz & 

Fitzmaurice, 2009). This is one of the shortfalls of GEE when there are some missing 

data.  

 

The term marginal model refers to models for longitudinal data, which have random 

effects (Fitzmaurice et al., 2009). Specification of a GEE is similar to a GLM with a 

linear predictor, a link function and variance described as a function of the mean. An 

additional feature of GEE is the working correlation structure R,  𝑛 𝑥 𝑛 correlation 

matrix common for all subjects. It is important that choice of working correlation 

matrix should be consistent with the observed correlation matrix. However, choice of 

the correlation structure for the repeated measurements is not critical for GEE. This is 

because GEE provides estimated parameters and standard errors that are robust to 

misclassification of the variance covariance structure. The important thing is that the 

univariate analysis models at each time point should be specified correctly. GEE 

should be applied when the research interest is mainly on estimates and inference of 

the regression parameters, but is not suitable when modeling variance-covariance 

structures of longitudinal data. 

 

In the frame work of GEE, there are two general approaches used to handle missing 

data. The first approach is to analyze multiple imputed data by generalized estimating 

equations. The second approach is the use of weighted estimating equations. This 
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approach is suitable when the missing data pattern is monotone, as a result of dropout. 

See Fitzmaurice et al., (2009) for more detail.  

 

2.1.5 Covariance Patten Model (CPM) 

Covariate Pattern model (CPM) can be regarded as an extension of MANOVA. CPM 

does not distinguish between subjects and within-subjects variance. CPM was first 

described by Jennrich and Schluchter (1986) (Hedeker & Gibbon, 2006). The 

regression model for CPM in matrix form can be written as 𝑦𝑖 = 𝑋𝑖𝛽𝑖 + 𝑒𝑖 , with 

𝑖 = 1,2, …𝑁 for n individuals and  𝑗 = 1,2, … 𝑛𝑖  observations for i individuals, 𝑦𝑖  is an 

𝑛𝑖 𝑥 1 vector for subject, 𝛽 is a 𝑝 𝑥 1 vector of fixed regression parameters, the vector 

𝑒𝑖   is assumed to be normally distributed with zero mean and variance-covariance Σ𝑖 , 

(Hedeker & Gibbon, 2006). CPM assumed that timing of measurements is fixed, this 

means that subjects are intended to be measured at the same finite number of 

occasions. CPM allows that individuals may have incomplete data. 

There are different covariance patterns for covariance pattern model (CPM). These 

covariance patterns include independent covariance structure, exchangeable 

covariance structure, first order autoregressive structure, Toeplitz structure and 

unstructured form. 

 

2.1.6 Missing data Mechanisms  

Missing data are common in longitudinal data. One of the reasons is that studies take 

long and some of participants may drop or may be lost to follow up before an 

endpoint of interest is measured. This section discusses the classification of missing 

data and the mechanisms used to handle missing data. 
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2.1.6.1 Classification of Missing Data 

Rubin (1976) has classified missing data in the following ways: missing 

completely at random (MCAR), missing at random (MAR) and missing not at 

random (MNAR).  Let 𝑅𝑖𝑗  stand for an indicator variable taking value 1 if an 

individual 𝑖 is observed at time 𝑗  and 0 when an individual was not observed at 

time 𝑗. If subjects were supposed to be measured at n time points, then 𝑛 𝑥 1 

complete dependent vector is 𝑌𝑖 = (𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑛  )′. And 𝑌𝑖  is an  𝑛 𝑥 1 matrix of 

covariates 𝑋𝑖 .  

The 𝑛 𝑥 1 missing data indicator vector is 𝑅′𝑖 = 𝑅𝑖1, 𝑅𝑖2 , … , 𝑅𝑖𝑛 , with 𝑅𝑖𝑗 = 1  if 

𝑌𝑖𝑗  is observed and 𝑅𝑖𝑗 = 0   if 𝑌𝑖𝑗  is missing. Further divide the complete data 

variable vector 𝑌 into observed 𝑌𝑖
𝑜 , and unobserved 𝑌𝑖

𝑚 . 

 

Rubin (1976) defined the terms as follows: data is said to be missing completely 

at random (MCAR) if the missing data occur totally at random. The missing data is 

not related to other observed or unobserved data. This is the most basic missing data 

mechanism and assumes missing data to occur for completely random reasons. The 

distribution of missing values R is thus assumed to be independent of both covariates 

and the dependent variable as  P 𝑅𝑖  𝑌𝑖
𝑜 , 𝑌𝑖

𝑚 , Xi = P(Ri)  (Rubin, 1976). Shaffer 

(1997) presented a good summary on missing data mechanism.  

 

The second mechanism of missing data to be discussed is missing at random 

(MAR). Data is said to be missing at random (MAR) if probability that responses 

or observations are missing depends on the set of observed responses, but is not 

related to the specific missing values that would have been obtained if there were no 
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missing data. MAR can be written as P 𝑅𝑖  𝑌𝑖
𝑜 , 𝑌𝑖

𝑚 , Xi = P 𝑅𝑖  𝑌𝑖
𝑜 , Xi (Rubin, 1976; 

Molenberghs & Fitzmaurice, 2009). 

 

Missing completely at random (MCAR) and missing at random (MAR) are referred to 

as ignorable mechanisms. In order to obtain valid likelihood based estimates in the 

presence of some missing data, the data have to meet the following two conditions. 

The first condition is that the missing data should be missing at random (MAR). 

Secondly the parameters defining missing data process should not be related to the 

parameters to be estimated.  

 

Finally, not missing at random (NMAR) is defined as the probability of missing 

responses, which depends on both the set of observed responses and the specific 

missing values that should have been obtained if there were no missing data. That is 

conditional distribution of  𝑅𝑖  given  𝑌𝑖
𝑜 , is related to 𝑌𝑖

𝑚  and P 𝑅𝑖  𝑌𝑖
𝑜 , 𝑌𝑖

𝑚 , Xi  

depends on at least some components of 𝑌𝑖
𝑚  (Rubin, 1976; Molenberghs & 

Fitzmaurice, 2009). When data are missing not at random (MNAR), they are called 

non ignorable missing data.  

 

2.1.7 Handling Missing Data 

 

There are different approaches used to handle missing data. Some of these approaches 

include complete case analysis, last value carried forward, imputation methods, 

expectation maximization (EM), selection models, and pattern mixture models. This 

section discusses some of these approaches. 
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2.1.7.1 Complete Case Analysis 

In the complete case analysis method, only subjects without missing observations are 

included in the analysis. That is, subjects with incomplete observations are discarded 

in the analysis of data.  Advantage of complete case analysis method is that it can be 

used for any kind of statistical analysis, however it gives unbiased estimate of mean 

response trends only when the missingness is missing completely at random (MCAR) 

(Nakai & Ke, 2011). In the complete case analysis, the amount of data is reduced and 

this leads to the reduction statistical power (Diggle et al., 2002). When data is not 

completely missing at random, complete case analysis may give biased results. 

Carpenter and Kenward (2007) recommended that complete case analysis should not 

be used to address the problem of missing data. 

 

2.1.7.2 Last observation carried forward (LOCF) 

Last observation carried forward (LOCF) imputes values for missing data based on 

the last previous observed value. This method is usually used in the longitudinal data, 

in which data are observed or collected at several occasions. It imputes values equal 

to the last observed response for the variable for each unit (Diggle et al 2002). The 

disadvantage of LOCF method is that it may give biased results when the missing data 

is not missing at random. As the result, Carpenter and Kenward (2007) argued that 

this method should not be used when imputing missing data.  

 

2.1.7.3 Expectation maximization (EM) 

Expectation maximization (EM) is another method used to produce estimates of 

coefficients during data analysis. This method is based on Bayesian thinking. EM was 
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introduced by Dempster et al. (1977). EM uses maximum likelihood estimation (ML) 

to produce parameter estimates. 

 

Likelihood methods handle problem of missing data by modeling and estimating 

parameters of joint distribution of 𝑌𝑖 , 𝑓(𝑌𝑖|𝑋𝑖 , 𝛾) (Molenberghs &Fitzmaurice, 2009). 

Maximum likelihood estimator (MLE) can be obtained by maximizing 𝑓(𝑌𝑖
𝑜
𝑖
|𝑋𝑖 , 𝛾). 

In this method, missing values are predicted by using observed data and the model of 

conditioned mean 𝐸(𝑌𝑖
𝑚
𝑖
|𝑌𝑖

𝑜 , 𝑋𝑖 , 𝛾) (Molenberghs & Fitzmaurice, 2009). 

 

EM works in two iterative stages. First stage is called expectation stage (E-step) and 

second stage is known as maximizing stage (M -step). Let 𝜃𝑡  be current estimate of 

parameter 𝜃, then 𝑊(𝜃𝑡 𝜃 =  𝑔 𝜃 𝑌𝑖 𝑓 𝑌𝑖
𝑚
𝑖
 𝑌𝑖

𝑜 ,  (𝜃𝑡 = 𝜃)𝑑𝑌𝑖
𝑚  , where 𝑔 𝜃 𝑌𝑖  is 

complete data log likelihood. M-step gets parameter estimates to maximize complete 

log likelihood from E-step. 𝑊(𝜃𝑡+1 𝜃𝑡 ≥ 𝑊(𝜃𝑡 𝜃  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃 .   E and M steps are 

iterated until iteration converges. The method assumes a large number of data so that 

the EM estimates can be approximately unbiased and normally distributed. In addition 

it assumes data to be ignorable, that is MCAR or MAR mechanism (Molenberghs & 

Fitzmaurice 2009). 

. 

2.1.7.4 Multiple imputation 

Multiple imputation (MI) is another approach used to handle missing data. Multiple 

imputation produces M different datasets, in which each could have been the 

complete dataset if all values were observed. These M complete datasets are 

combined to obtain estimates and standard errors that reflect uncertainty in the 

missing data and the finite sample variation (Rubin, 1987). Multiple imputation 
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method is Bayesian based. MI involves 3 different stages; namely missing values are 

filled M times to generate M complete datasets; each of the M complete datasets is 

analyzed by using standard, compete, procedures; and results from the M analyses are 

combined to produce a single MI estimator and to draw inferences using Rubin’s rule 

(Rubin, 1987).  

 

In MI, missing data are substituted by their corresponding imputation samples, 

producing M completed data sets. Using the notation of Kenward and Carpenter 

(2009), let  𝛽𝑘  be estimate of β and 𝑉𝒌  be covariance matrix from the 𝑘𝑡𝑕 completed 

data set (𝑘 =  1, . . . , 𝑀). The MI estimate of β is the simple average of the estimates 

𝛽 𝑀𝐼 =
1

𝑀
 𝛽 𝑘
𝑀
𝑖=1                                                                                                              2.1.6 

Rubin (1987) provides the following expression for the covariance matrix of 𝛽 𝑀𝐼  that 

can be applied very generally and uses only complete-data quantities. Define 

𝑊 =
1

𝑀
 𝑉𝑘
𝑀
𝑖=1  to be the average within-imputation covariance matrix, and 

𝐵 =
1

𝑀−1
 (𝛽 𝑘 −
𝑀
𝑖=1 𝛽 𝑀𝐼)(𝛽 𝑘 − 𝛽 𝑀𝐼)′ to be the between-imputation covariance matrix 

of 𝛽𝑘 . Then, an estimate of the covariance matrix of 𝛽 is given by 

𝑉 𝑀𝐼 = 𝑊 +  
𝑀+1

𝑀
 𝐵                                                                                       2.1.7 

Tests and confidence intervals are based on the approximate pivot                           

𝑃 =  𝛽 𝑀𝐼 − 𝛽 𝑉𝑀𝐼
−1  𝛽 𝑀𝐼 − 𝛽  (Rubin, 1987).  

Multiple imputation produces unbiased estimates and variance if the data is missing 

completely at random (MCAR) or missing at random (MAR) (Little & Rubin, 2002; 

Diggle et al., 2002; Hedeker & Gibbon, 2006).  
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2.1.8 Missing Data Not At Random 

The approaches described above make assumption that the data missing mechanism is 

MCAR or MAR, but in some cases the data may be missing not at random (MNAR). 

To handle MNAR, the missing data distribution must be taken into consideration 

when imputing the unobserved values.  When handling data, which is not missing at 

random selection and pattern mixture models can be used. 

 

2.1.8.1 Selection models 

Selection model is made up of distributions for the complete data and missing data 

given the data itself. Therefore the joint distribution of the complete data 𝑌𝑖  and the 

missing data distribution 𝑅𝑖  through models for marginal distribution of 𝑌𝑖  and the 

conditional of 𝑅𝑖  given 𝑌𝑖  can be written as 

𝑓 𝑅𝑖  𝑌𝑖 𝑋𝑖  , 𝛾, 𝜙 = 𝑓𝑌 𝑋𝑖 , 𝛾 𝑓𝑅|𝑌(𝑅𝑖|𝑋𝑖 , 𝛾, 𝜙), where 𝜃 = (𝛾, 𝜙) (Little, 2009). 

Selection models are extremely sensitive to the distributional shape that is chosen for 

the population (Schafer & Graham, 2002). 

 

2.1.8.2 Pattern Mixture Models 

Another approach used to model non ignorable missing data is pattern mixture model. 

This model groups the whole sample on basis of the missing data distribution. Pattern 

mixture models specify marginal distribution of 𝑅𝑖  and conditional distribution of 𝑌𝑖  

given 𝑅𝑖  can be written as 𝑓 𝑅𝑖  𝑌𝑖 𝑋𝑖  , 𝑣, 𝛿 = 𝑓𝑅 𝑅𝑖|𝑋𝑖 , 𝛿 𝑓𝑌|𝑅(𝑌𝑖|𝑋𝑖 , 𝑅𝑖 , 𝑣)    2.1.8.  

In equation 2.1.8, 𝜃 = (𝑣, 𝛿). Unlike selection models, pattern mixture models are not 

sensitive to distribution of the population (Schafer & Graham, 2002). 
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2.2 Statistical Models for Survival Data  

 

2.2.1 Introduction 

 

There are many techniques used to analyze survival data. This section describes some 

of the techniques used to analyze survival data. 

 

2.2.1.1 Survival Time Distribution 

Using notation similar to that of Kalbfleisch and Prentince (2002), suppose Ti denote 

survival time of an 𝑖𝑡𝑕 
individual (𝑖 = 1,2,3, … . 𝑛) , that is taken as the minimum of 

true event time t*. The data that can be observed are  𝑡𝑖 , 𝛿𝑖 , 𝑓𝑜𝑟 𝑖 = 1,2,3, … . 𝑛 

where 𝑡𝑖  =  𝑚𝑖𝑛(𝑡𝑖
∗, 𝑐𝑖). Further denote 𝛿𝑖  =  𝐼(𝑡𝑖

∗ < 𝑐𝑖), where 𝑐𝑖  is censoring time 

for the ith individual. Then Ti can be regarded as a random variable. 

 

Let T be a non negative random variable representing the survival time. Survival time 

distribution can be described by one of the following three functions; survival 

function, hazard function, and probability density function. The definitions presented 

in this section are based on a book written by Kalbfleisch and Prentince (2002).  

It has to be noted that survival function is defined by both discrete and continuous T. 

Both probability density and hazard functions are available for discrete and 

continuous T.  Survival function  𝑆(𝑡) is defined for both discrete and continuous 

distributions as the probability that the survival time is greater than t. That is 𝑆 𝑡 =

𝑃(𝑇 > 𝑡), 0 < 𝑡 < ∞. 
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2.2.1.2 T discrete  

If T is a discrete random variable taking ordered values  𝑡1 <  𝑡2 < ⋯  , with 

associated probability function 𝑓 𝑡𝑖 = 𝑃 𝑇 = 𝑡𝑖 ,   𝑖 = 1,2,3, …  then the survival 

function is expressed as 𝑆 𝑡 =  𝑓(𝑡𝑗𝑗 |𝑡𝑖>𝑡
). 

The hazard function 𝑕 𝑡  is defined as the conditional probability of failure at time 𝑡𝑗  

given that the individual has survived up to time 𝑡𝑗 . 

𝑕 𝑡𝑗  = 𝑃 𝑇 = 𝑡𝑗  𝑇 ≥ 𝑡𝑗  =
𝑓(𝑡𝑗 )

𝑆(𝑡𝑗 )
 

                                              = 1 −
𝑆(𝑡𝑗+1)

𝑆(𝑡𝑗 )
                                              2.2.1   

                                                                   

2.2.1.3 T absolute continuous 

If T is absolute continuous variable, then the probability density function of T is 

expressed as 𝑓 𝑡 = 𝐹′ 𝑡 = −𝑆′ 𝑡 , 𝑓𝑜𝑟 𝑡 ≥ 0. 

Hazard function gives instantaneous failure rate at t given that the subject has 

survived up to time t, mathematically; the hazard function is given by 

𝑕 𝑡 = lim∆𝑡→0
𝑃(𝑡≤𝑇<𝑡+∆𝑡|𝑇≥𝑡)

∆𝑡
  .                                                            2.2.2 

 

Survival function and hazard function are related and their relationship is given by the 

following formula 𝑕 𝑡 =
𝑓(𝑡)

𝑆(𝑡)
=

−𝑑𝑙𝑜𝑔𝑆 (𝑡)

𝑑𝑡
 , where 

𝑆 𝑡 = exp[− 𝑕 𝑢 𝑑𝑢] = 𝑒𝑥𝑝
𝑡

0
 −𝐻 𝑡  𝑓𝑜𝑟 𝑡 ≥ 0. 

𝐻 𝑡 =  𝑕 𝑢 𝑑𝑢
𝑡

0
 is called cumulative hazard function that can be obtained from 

survival function because of the following relationship 𝐻 𝑡 = −𝑙𝑜𝑔𝑆(𝑡). 

Probability density function for T may be written as  
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𝑓 𝑡 = 𝑕(𝑡)exp[− 𝑕 𝑢 𝑑𝑢]
𝑡

0
  .                                                                          2.2.3 

The remaining part of this section reviews some of the methods, which are used to 

analyze survival data.  

 

2.2.2 The Kaplan Meier estimate of Survival Function 

Kaplan-Meir estimate of survival function (Kaplan & Meier, 1958) is the estimator 

used by most statistical software packages (Hosmer & Lemeshow, 1999). The 

estimator uses information from all observations, both censored and uncensored, and 

considers survival at any point in time as series of steps defined by observed survival 

and censored time (Hosmer & Lemeshow, 1999; Collet, 2003). 

 

Suppose that k individuals have experienced an event of interest, such as death in 

group of individuals. If we let 0 ≤  𝑡(1) < ⋯ < 𝑡 𝑘 <  ∞  be the observed events of 

interest i.e. death, ordered according to times the event of interest has occurred. Let 𝑘𝑗  

be the number of individuals who are at risk at 𝑡 𝑘 . The individuals at risk can be 

defined as the individuals who are alive and not censored just before 𝑡 𝑗  . 

Furthermore let 𝑑𝑗   be the number of events of interest (deaths) that have been 

observed at 𝑡 𝑗  , 𝑗 = 1, 2, … , 𝑘. Then Kaplan Meier estimator of 𝑆(𝑡) is defined by 



S  𝑡 =  1 −
𝑑𝑗

𝑘𝑗
𝑗 : 𝑡 𝑗  <𝑡                                                                              2.2.4 

 

It should be noted that Kaplan Meier estimator changes its value when a death has 

happened. This estimator has discrete distribution (Hosmer & Lemeshow, 1999; 

Collet, 2003). Confidence intervals may be calculated by using Greenwood’s formula, 

which was developed by Greenwood in 1922 (Hosmer & Lemeshow, 1999). 
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Comparison of two survival distributions can be done by using Log Rank Test. Non 

parametric methods such as Kaplan Meier are suited for the homogeneous samples, 

and their shortfall is that they cannot determine if variables or covariates are related to 

the survival times (Machin et al., 2006), thus, it is often difficult to control for 

potential confounders using these methods. 

 

2.2.3 Cox Proportional Hazard Model 

Cox proportion hazard model (Cox, 1972) has been widely used in analyzing survival 

data (Cox & Oakes, 1984; Hosmer & Lemeshow, 1999; Collet, 2003). The Cox 

proportional hazard model is given by the following:                       

𝑕(𝑡|𝑧)  =  𝑕0(𝑡)𝑒𝑥𝑝(βizi + β2z2 + ⋯+ βpzp ).                                  2.2.5 

In the equation 2.2.1, z is explanatory vector, which does not change over time for 

any individual, (βi + β2 + ⋯+ βp)  is vector of regression coefficients and 𝑕0(𝑡) is 

baseline hazard function. The hazard ratio (HR) for two individual with covariates 

values denoted z1 and z0 is expressed as   

𝐻𝑅 =
𝑕0(𝑡)exp ( 𝑧1(β i +β2+⋯+βp ) )

𝑕0(𝑡)exp ( 𝑧0(β i +β2+⋯+βp ) )
 .                                                               2.2.6 

Cox proportion hazard model is time independent. The advantage of Cox model is 

that interpretation is easy and similar to that of the relative risk ratio (Hosmer & 

Lemeshow, 1999; Collet, 2003; Kalbfleish & Prentice, 2002). 

 

2.2.4 Stratified Cox Model 

Stratified Cox model stratifies predictors, which are not satisfying the proportional 

hazard assumptions (Hosmer & Lemeshow, 1999). Once the predictor has been 

identified, the data are grouped into subgroups, and then the Cox model is performed 

in each subgroup. Hosmer and Lemeshow (1999) describes stratified Cox model in 
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Chapter 7 of their book. The model is given by 𝑕𝑖𝑘  𝑡 =  𝑕𝑜𝑘  𝑡 exp(𝛽𝑇𝑋𝑖𝑘), where 

𝑘 =  1, 2, … . 𝑆  represents the subgroup or stratum. The hazards for this model are 

non-proportional because the baseline hazards may be different between subgroups or 

strata. The coefficients 𝛽 are assumed to be the same for each subgroup or stratum k. 

The partial likelihood function is obtained by multiplying partial likelihood for each 

stratum. The problem with this approach is that the effects of stratified predictors 

cannot be identified.  

 

2.2.5 Cox Model with Time Dependent Variables 

Sometimes values of covariates may change over time t. If this scenario arises, Cox 

proportional with time independent covariate may not be appropriate approach to use. 

This is because the proportion hazard makes assumption that the effects of any 

covariate in the model does not change at any point in time. Therefore this type of 

data, where covariates are changing with time, can be modeled using Cox proportion 

model with time dependent covariates. Cox model with time dependent variables has 

been discussed by Cox and Oakes (1984), Hosmer and Lemeshow (1999) and Collet 

(2003). In order to model time dependent effects 𝑋(𝑡), then  𝛽𝑋 𝑡 =  𝛽(𝑋) 𝑥 𝑝(𝑡). 

Where 𝑝(𝑡) is function of time t.  

If survival data has both time independent 𝑋𝑖  and time dependent covariates  𝑋𝑖 𝑡  . 

The Cox proportion model can be written as  

𝑕 𝑡 𝑥 𝑡  =  𝑕𝑜 𝑡 exp  𝛽𝑖
𝑘1
𝑖=1 𝑥𝑖 +  𝛼𝑗

𝑘2
𝑗=1 𝑥𝑗  𝑡                                      2.2.7 

At any time t, hazard ratio (HR) for two individuals with different covariates x and 𝑥’ 

is given by 
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In the above formula the coefficient j



  is not time-dependent. The term j



  

represents overall effect of 𝑋𝑗  𝑡  at all the times that covariate has been measured in 

the study.   

 

Time dependent variables can be classified either as internal or external. An internal 

time-dependent variable is any variable, which can change the value of covariate over 

time and is related to the characteristics of the individual. For example hemoglobin 

level, blood pressure, body mass index and CD4 count. External time dependent 

variable is a variable whose value at a particular time does not require subjects to be 

under direct observations, that is, values change because of external characteristics to 

the individuals ,for example level of environmental degradation. 

 

2.2.6 Parametric Proportional Hazards Models 

Parametric proportional hazards models are also used to analyze survival data. They 

have got the same form as Cox proportional models. Hazard function at time t for a 

particular patient with a set of z covariates  (𝑥1, 𝑥2 , … , 𝑥𝑧) is given as 

𝑕 𝑡 𝑥 =  𝑕𝑜 𝑡 exp  𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+  𝛽𝑧𝑥𝑧  .                               2.2.8 

The distribution of 𝑕𝑜 𝑡  has to be specified in parametric proportion hazard models. 

The commonly applied parametric proportional hazards models are exponential, 

Weibull and Gompertz models. Weibull models are mostly used (Collet, 2003). 

 

2.2.6.1 Weibull Proportional Hazard model 

If survival times follow Weibull distribution with scale parameter  𝜆  and shape 

parameter 𝛾 such that survival and hazard function of a Weibull distribution are given 

by 𝑆 𝑡 = exp− (𝜆𝑡𝛾)  and  𝑕 𝑡 = 𝜆(𝑡)𝛾−1 respectively. Both  𝜆 and  𝛾 are greater 



31 
 

than zero. When 𝜆 > 1  hazard rate increases and decreases when 𝜆 < 1. When 𝛾 =

1, the hazard rate does not change, i.e. it remains constant. When 𝛾 = 1, Weibull 

distribution reduces to exponential distribution. 

 

Hazard function for Weibull proportional hazard model for a particular individual 

with z covariates (𝑥1, 𝑥2 , … , 𝑥𝑧) is written as 

𝑕 𝑡|𝑥 = 𝜆(𝑡)𝛾−1 exp  𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑧𝑥𝑧 .                                     2.2.9 

 

2.2.6.2 Exponential Proportional Hazard Model 

As already stated exponential proportional hazard model is a special case of Weibull 

model when 𝛾 = 1. The hazard function for exponential proportional hazard model is 

constant over time. Survival function is given as 𝑆 𝑡 = exp− (𝜆𝑡). Hazard function 

is expressed as   𝑕 𝑡 = 𝜆 . Under the exponential proportion hazard models, the 

hazard function for exponential proportional hazard model for an individual is given 

by  

𝑕 𝑡|𝑥 = 𝜆 exp  𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+  𝛽𝑧𝑥𝑧 .                                             2.2.10 

 

2.2.6.3 Gompertz Proportional Hazard Model 

Survival function of the Gompertz distribution is expressed as 

𝑆 𝑡 = exp( 
𝜆

𝜃
(1 − 𝑒𝜃𝑡 )) for 𝜃 ≤ 𝑡 ≤ ∞  and 𝜆 > 0 . Its hazard function is expressed 

as 𝑕 𝑡 = 𝜆exp(𝜃𝑡), for 𝜃 ≤ 𝑡 ≤ ∞  and 𝜆 > 0. Parameter 𝜃 gives the shape of the 

hazard function. Gompertz hazard decreases or increases monotonically. The hazard 

function of an individual is expressed as 

    𝑕 𝑡|𝑥 = 𝜆 exp(𝜃𝑡)exp  𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+  𝛽𝑧𝑥𝑧 .                               2.2.11 
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2.2.7 Accelerated failure time (AFT) model 

Parametric PH models are widely applicable in analyzing survival data. PH models 

assume a constant hazard over time. In practice, however the hazard function may not 

necessarily be a constant. It may either accelerate or decelerate over time. Some 

parametric models are available to handle these situations. There are relatively few 

probability distributions for the survival time that can be used with these models. In 

these situations, the accelerated failure time model (AFT) is an alternative to the PH 

model for the analysis of survival time data (Collet, 2003). These AFT models include 

log-logistic and log-normal AFT models. AFT models measure direct effect of the 

explanatory variables on the survival time instead of hazard. The accelerated failure 

time (AFT) has been described by Collet (2003) and Hosmer and Lemeshow (1999). 

For a group of patients with covariate  𝑋1, 𝑋2, … , 𝑋𝑝 , the model is written as    

𝑆 𝑡 𝑥 = 𝑆0(𝑡|𝜏(𝑥) ), where 𝑆0(𝑡)  is the baseline survival function, 𝜏  is an 

acceleration factor. Acceleration factor is ratio of survival times that correspond to 

any fixed value of 𝑆(𝑡). The acceleration factor is expressed in the formula below                           

      𝜏 𝑥 = exp(𝛼1𝑥1+𝛼2𝑥2 + ⋯+ 𝛼𝑝𝑥𝑝).                                                         2.2.12 

In the accelerated failure time model, the covariate effects are thought to be constant 

and multiplicative on the time scale. Considering the relationship of survival and 

hazard function, the hazard function for an individual with covariate  𝑋1, 𝑋2, … , 𝑋𝑝  is 

expressed as  𝑕 𝑡 𝑥 =
1

𝜏(𝑥)
𝑕0𝑡|𝜏(𝑥) . The corresponding log-linear form of the 

accelerated failure time (AFT) model with respect to time is given by 

𝑙𝑜𝑔 𝑇𝑖 =  𝑢 + 𝛼1𝑥1𝑖 + 𝛼2𝑥2𝑖 + ⋯+ 𝛼𝑝𝑥𝑝𝑖 + 𝜍𝜖𝑖 , where 𝑢   is intercept,  𝛼  is scale 

parameter and 𝜍𝜖𝑖  is a random variable that is assumed to have a certain distribution.  
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2.2.7.1 Estimation of AFT model 

AFT models use maximum likelihood method. The likelihood of 𝑛 observed survival 

times,  𝑡1, 𝑡2, … , 𝑡𝑛  is given by 𝐿 𝛼 , 𝜇, 𝜍 =  {𝑓𝑖(𝑡𝑖)
𝑛
𝑖=1  }𝛿𝑖   { 𝑆𝑖(𝑡𝑖)}1−𝛿𝑖  , where  

𝑓𝑖 𝑡𝑖  and 𝑆𝑖(𝑡𝑖) are the density and survival functions for the 𝑖𝑡𝑕 subject at 𝑡𝑖 , and 

𝛿𝑖  is an event indicator for the 𝑖𝑡𝑕 observation. The log-likelihood function is written 

as 𝐿 𝛼 , 𝜇, 𝜍 =  {𝑛
𝑖=1 𝛿𝑖𝑙𝑜𝑔𝜍𝑡𝑖 + 𝛿𝑖 𝑙𝑜𝑔𝑓𝜖𝑖 (𝑧𝑖) + (1 − 𝛿𝑖)𝑙𝑜𝑔𝑆𝜖𝑖(𝑧𝑖,)}, where  

 𝑧𝑖 = (log 𝑡𝑖 − 𝜇 − 𝛼𝑖𝑥1𝑖 − 𝛼𝑖𝑥2𝑖  …− 𝛼𝑖𝑥𝑝𝑖 )/𝜍 .  

2.2.7.2 Log-logistic AFT model 

The description of log logistic AFT model in this section was taken from Collet 

(2003). The survival and hazard function of log-logistic are given by 

𝑆 𝑡 =
1

1+𝑒𝜃 𝑡𝑘
 ,  𝑕 𝑡 =

𝑒𝜃𝑘𝑡 𝑘

1+𝑒𝜃 𝑡𝑘
 , where 𝜃 and 𝑘 are unknown parameters and 𝑘 >  0. 

When 𝑘 ≤ 1, the hazard rate decreases monotonically and when 𝑘 > 1 hazard rate 

increases from zero to a maximum value and then decreases to zero. 

If survival times have a log logistic distribution with parameter 𝜃 and 𝑘 , then the 

hazard function for the 𝑖𝑡𝑕 subject can be written as 𝑕𝑖 𝑡 =
𝑒𝜃−𝑘𝑙𝑜𝑔 𝜏𝑖𝑘𝑡 𝑘−1

1+𝑒𝜃−𝑘𝑙𝑜𝑔 𝜏𝑖𝑡
𝑘 , 

where 𝜏𝑖 = 𝑒𝑥𝑝(𝛼1𝑥1+ 𝛼2𝑥2 + ⋯+ 𝛼𝑝𝑥𝑝)  for individual 𝑖  with 𝑝  independent 

variables. If the baseline survival function is  𝑆0 𝑡 =
1

1+𝑒𝜃 𝑡𝑘
 , where 𝜃  and 𝑘  are 

unknown parameters, then the baseline odds of surviving beyond time t are given by 

𝑆0 𝑡 

1−𝑆0 𝑡 
=  

1

𝑒𝜃 𝑡𝑘
 . The survival time for the 𝑖𝑡𝑕  individual also follows log logistic 

distribution, which is 𝑆𝑖 𝑡 =
1

1+𝑒𝜃−𝑘𝑙𝑜𝑔 𝜏𝑖𝑡
𝑘 . Therefore the odds of the 𝑖𝑡𝑕 individual 

surviving beyond time t is given by 
𝑆𝑖 𝑡 

1−𝑆𝑖 𝑡 
=

1

𝑒 𝑙𝑜𝑔 𝜏𝑖−𝜃 𝑡−𝑘
 . 

In a two group study the log (odds) of the 𝑖𝑡𝑕 individual surviving beyond time 𝑡 are 
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𝑙𝑜𝑔
𝑆𝑖 𝑡 

1−𝑆𝑖 𝑡 
= 𝛽𝑥𝑖𝑘𝑙𝑜𝑔𝑡 , where 𝑥1  is the value of a categorical variable, which can 

take a value of 1 in one group and 0 in the other group. If 𝑇𝑖  has a log-logistic 

distribution, then 𝜀𝑖  has a logistic distribution. Therefore the survival function of 

logistic distribution is given by 𝑆𝜀𝑖 𝜀 =
1

1+exp (𝜀)
. 

 

2.2.7.3 Log-normal AFT model 

The description of log normal AFT model in this section was taken from Collet 

(2003). When the survival times are assumed to follow a log-normal distribution, 

baseline survival function is written as 𝑆0 𝑡 = 1 − 𝜑(
𝑙𝑜𝑔𝑡 −𝑢

𝜍
) and the hazard function 

is given by 𝑕0 𝑡 =
𝜗(

𝑙𝑜𝑔𝑡

𝜍
)

1−𝜑(
𝑙𝑜𝑔𝑡

𝜍
)𝜍𝑡

 , where 𝑢 and 𝜍 are parameters, 𝜗(𝑥)  is probability 

density function and 𝜑(𝑥)  is cumulative density function of the standard normal 

distribution. The survival function for the 𝑖𝑡𝑕  individual is                                 

𝑆𝑖 𝑡 = 𝑆𝑖 𝑡|𝜏𝑖 = 1 − 𝜑(
𝑙𝑜𝑔𝑡 −𝛼 ′ 𝑥𝑖−𝑢

𝜍
), 

where 𝜏𝑖 = exp 𝛼1𝑥1+𝛼2𝑥2 + ⋯+ 𝛼𝑝𝑥𝑝 .  Therefore log survival time for the 𝑖𝑡𝑕 

individual has normal 𝜇 + 𝛼′𝑥𝑖 , 𝜍. 

In a two group study, one can easily get 𝜑−1 1 − 𝑠 𝑡  = 1/𝜍(𝑙𝑜𝑔𝑡 − 𝛼′𝑥𝑖 − 𝑢) 

where 𝑥𝑖  is value of a categorical variable is 1 in one group and 0 in other group. 

 

2.3 Joint Models for Longitudinal Measurements and Survival Data 

Joint models of longitudinal measurements and event to time are commonly used 

especially when there is association between the two processes. Mainly joint models 

have been used in studies addressing AIDS, cancer issues and quality of life (Lim et 

al., 2013; Sweeting & Thomson, 2011; Rizopoulos, 2010). There are approaches that 
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are used to model survival and longitudinal data together. These approaches are two 

stage and likelihood based. This section reviews literature for the joint modeling 

methods. 

 

Early discoveries in joint modeling focused on longitudinal data.  The earlier work 

utilized longitudinal data model of the following form: 

𝑋𝑖 𝑡 = 𝑓(𝑡)𝑇𝛼𝑖                                                                               2.3.1 

In the equation 2.3.1, 𝑓(𝑡) is vector of functions of t, and 𝛼𝑖  is the linear function. 

Schluchter (1992) developed a log normal survival model. In fact the model 

developed was an extension of equation 2.1.2. The model was modeled in two stages. 

The author maintained regressions for individual subject during the first stage. In the 

second stage, an assumption that log survival time, true slope and intercept follow 

trivariate normal distribution. Maximum likelihood estimates were calculated using 

EM algorithm. Other authors who proposed a model in a two stage approach were 

Hogan and Laird (1997). Hogan and Laird (1997) modeled longitudinal observed 

response and survival time using the linear mixed effects model. 

 

Pawitan and Self (1993) used joint models in which times to event were modeled 

using a parametric approach. Tsiatis et al. (1995) and Raboud et al. (1993) adopted 

the use of Cox proportion hazard model in modeling survival times. The Cox models 

were of the form:                                                    

𝑕𝑖 𝑡 = 𝑕0 𝑡 exp(𝛾𝑋𝑖(𝑡) + 𝜂𝑇𝑍𝑖)                                                         2.3.2. 

In the equation 2.3.2, 𝑋𝑖(𝑡) is considered to be time dependent variable. In order to 

assess association, 𝛾 and 𝜂 are estimated. Among the authors who used this approach 

are include Raboud et al. (1993) who focused on potential bias because of the use of 
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last value carried forward approach (LVCF) in providing missing data and its failure 

to account for measurement error. Raboud et al. (1993) concluded that their approach 

reduced bias as compared to naive approaches. 

 

Self and Pawitan (1992) proposed another approach where inference was made on sub 

models for survival time and longitudinal model. The longitudinal model was similar 

to equation 2.3.1, while the hazard model was similar to equation 2.3.2. Self and 

Pawitan (1992) replaced 𝛾𝑋𝑖(𝑡)  in equation 2.3.2 with 1 + 𝛾𝑋𝑖(𝑡 ). They further used 

a two stage approach to calculate estimates. 

  

Tsiatis et al. (1995) used a two stage approach in their work. They used the linear 

mixed effect model to model longitudinal data sub model and Cox proportion hazard 

sub model to analyze event time data. They maximized partial likelihood in order to 

produce estimates. The two stage approach was further investigated by Bycott and 

Taylor (1998), Dafni and Tsiatis (1998) and Tsiatis, DeGruttola and Wulfsohn (1995). 

They all concluded that this approach reduce bias for the estimates 𝛾 and 𝜂 shown in 

equation 2.3.2. 

 

Methods based on likelihood were also investigated. These methods were based on 

specification of likelihood function for parameters in equation 2.3.2 and                           

             𝑌𝑖(𝑡𝑖𝑗 ) = 𝑋𝑖(𝑡𝑖𝑗 ) + 𝑒𝑖(𝑡𝑖𝑗 ).                                                                            2.3.3                            

In equation 2.3.3, 𝑌𝑖  is observed longitudinal data,  𝑒𝑖(𝑡𝑖𝑗 ) is measurement error and is 

distributed normally and has zero mean and its variance is 𝜍2 .  
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DeGruttola and Tu (1994) used a longitudinal data model shown in equation 2.3.1 and 

transformed event time i.e. lognormal model for survival time model. They used EM 

algorithm to maximize the log-likelihood. Wulfsohn and Tsiatis (1997) introduced the 

use Cox proportional hazards model and longitudinal variables when analyzing this 

kind of data. They used random effects for the longitudinal process. In this model, 

estimates that maximize joint likelihood of survival and longitudinal processes are 

calculated using EM algorithm. The model that was proposed by Wulfsohn and 

Tsiatis (1997) was extended by Zeng and Cai (2005) to include the covariates in the 

linear mixed effects random model in equation 2.3.1 in the longitudinal data. For the 

survival data, they used multiplicative hazard models. The relationship between the 

survival time and longitudinal processes is linked to the random effects. 

 

Xu and Zeger (2001) introduced another concept in which general latent variable 

model was used to analyze for survival and longitudinal data simultaneously.  

Henderson et al. (2000) proposed model for modeling the longitudinal and survival 

data. They linked survival and longitudinal data by using the latent stochastic process. 

Parameters were estimated using EM algorithm in which Gaussian Hermitte 

numerical integration was used during the E-step. 

 

Lin et al. (2002) proposed latent class models for analyzing longitudinal and event to 

time data. If observed longitudinal trajectories depict heterogeneity in the observed 

longitudinal trajectories, the linear mixed effects models cannot fully measure the 

covariates. The latent class model provides way to handle additional heterogeneity to 

uncover distinct subpopulation (Song, 2013). 
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Faucett and Thomas (1996) modeled longitudinal data and event time by using 

Bayesian approach. Faucett and Thomas (1996) used Gibbs sampling approach to 

estimate the parameters. Xu and Zeger (2001) generalized this approach presented in 

model 2.3.4. 

𝑋𝑖 𝑡 = 𝑓(𝑡)𝑇𝛼𝑖 + 𝑈𝑖(𝑡)                                                                 2.3.4. 

In the equation 2.3.4, 𝑈𝑖(𝑡) is stochastic process with zero mean. Wang and 

Taylor (2001) decided to include longitudinal model similar the one shown in 

equation 2.3.4 in the Bayesian framework. They used MCMC to analyze their data. 

Brown and Ibrahim (2003a) developed a semi-parametric Bayesian approach of the 

form of equation 2.1.2. Brown and Ibrahim (2003b) developed a method for analyzing 

survival time and longitudinal data, when a fraction of study participants has been 

cured. Also Law et al. (2002) proposed a method for analyzing longitudinal and 

survival time data when a fraction of study participants has been cured. There was a 

further development in 2008. Ye and Taylor (2008) proposed a joint model with a 

linear growth curve model with random intercept and slope for the longitudinal 

variable measurements.  

 

The disadvantage of likelihood approach is that it is computational complex (Tsiatis 

& Davidian, 2004). Because of this problem Tsiatis and Davidian (2001) proposed a 

method, which is simple to implement. Basing on equations 2.3.1 and 2.3.2 

𝛾 𝑎𝑛𝑑 𝜂 can be estimated easily. This approach uses conditional score. The concept of 

conditional score was pioneered by Stefanski and Carroll (1987) in order to analyze 

generalized linear models with a measurement error. The conditional score works by 

“treating 𝛼𝑖  as nuisance parameters and conditioning on an appropriate sufficient 

statistics” (Tsiatis & Davidian, 2004). 
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2.4 Shared Random Effects Models 

The Shared Random Effects Model (SREM) is direct extension of the idea of survival 

model with time dependent covariates by considering as covariates some 

characteristics of the mixed model defined for the longitudinal data (Faucett & 

Thomas, 1996; Henderson et al., 2000; Ibrahim et al., 2010; Wu et al., 2012). The 

characteristics are functions of the individual random effects of the mixed model that 

capture the individual deviations to the mean trajectory longitudinal data.  Joint 

models that use shared random effects have two sub models namely longitudinal data 

sub models and survival data sub model. 

 

2.4.1 Longitudinal data Sub model 

For the Longitudinal sub model, assume that the repeated measures 𝑌𝑖(𝑡𝑖𝑗 ) are the 

measures of true unobserved value for 𝑗 = 1,2, … , 𝑛𝑖 . The mean change overtime of 

𝑌𝑖
∗(𝑡𝑖𝑗 ) can be modeled by taking into account the correlation within the repeated 

measures of a same subject. 

𝑌𝑖(𝑡𝑖𝑗 ) = 𝑌𝑖
∗(𝑡𝑖𝑗 ) + 𝜖𝑖(𝑡𝑖𝑗 )  = 𝑋𝐿𝑖(𝑡𝑖𝑗 )𝑇𝛽 + 𝑍𝑖(𝑡𝑖𝑗 )𝑇𝑏𝑖 + 𝜖𝑖(𝑡𝑖𝑗 )                    2.4.1 

Where  𝑋𝐿𝑖(𝑡𝑖𝑗 ) and 𝑍𝑖(𝑡𝑖𝑗 ) are  p vector and q vector of time dependent covariates 

associated with the p vector of fixed effects 𝛽  and q vector of Gaussian random 

effects 𝑏𝑖  with mean 0 and variance-covariance matrix 𝛽. The design matrices 𝑋𝐿𝑖  and 

𝑍𝑖  will be used for the row vectors 𝑋𝐿𝑖(𝑡𝑖𝑗 )𝑇  and 𝑍𝑖(𝑡𝑖𝑗 )𝑇  respectively for                 

 𝑗 = 1,2, … , 𝑛𝑖 . In equation 2.4.1, the fixed part of 𝑋𝐿𝑖𝛽 represents the mean trajectory 

of the repeated measurements over time, while 𝑍𝑖𝑏𝑖  defines the individual deviation 

with relative to the mean trajectory. The vector of measurements 

is  𝜖𝑖 = (𝜖𝑖(𝑡𝑖1), . . , 𝜖𝑖(𝑡𝑖𝑛𝑖)) . Further assume that 𝜖𝑖  is independent and follow 
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multivariate Gaussian distribution of mean 0 and diagonal variance-covariance 

matrix Σ𝑖 = 𝜍2𝐼𝑛𝑖 , 𝜖𝑖  and 𝑏𝑖  are independent. 

 

2.4.2 Survival Sub model 

The risk of event can be modeled using any survival model but proportional hazard 

models are mostly considered and defined as follows: 

𝑕𝑖𝑡 𝑋𝑆𝑖 , 𝑏𝑖 = 𝑕0(𝑡)𝑒𝑋𝑆𝑖
𝑇 𝛾+𝑕(𝑏𝑖 ,𝑡)𝑇𝜂                                                         2.4.2 

where 𝑕0(𝑡 ) is the hazard function for baseline and 𝛾 defines association between p 

vector of covariates of 𝑋𝑆𝑖  (that can be time dependent) and the survival time. The 

function 𝑕(𝑏𝑖 , 𝑡) is a multivariate function of the random effects 𝑏𝑖  defined in (2.4.1) 

and is associated with the vector of parameter  𝜂 . The association between the 

longitudinal and survival processes is measured by coefficients 𝜂, and 𝑕(𝑏𝑖 , 𝑡) defines 

the nature of the dependence between the two processes. 

 

2.4.3 Maximum Likelihood Estimation 

Shared random effect models (SREM) can be estimated by considering the joint 

likelihood from the longitudinal and survival sub models. 

Let 𝜃  be the whole vector of parameters defined in (2.4.1) and (2.4.2). The log 

likelihood of the observed data can be written as: 

𝑙 𝜃 = log[ ( 𝑓𝑌(𝑌𝑖
𝑏𝑖

|𝑋𝐿𝑖 , 𝑏𝑖 ; 𝜃)𝑓𝑇 𝑇𝑖 𝑋𝑠𝑖 , 𝑏𝑖 ; 𝜃 𝑓𝑏(𝑏𝑖 ; 𝜃)𝑑𝑏𝑖)]    

𝑁

𝑖

 

𝑙 𝜃 =  log𝑁
𝑖=1   𝑓𝑌(𝑌𝑖𝑏𝑖

 𝑌𝑖  𝑋𝐿𝑖 , 𝑏𝑖 ; 𝜃 𝑕𝑖   𝑇𝑖 𝑋𝑠𝑖 , 𝑏𝑖 ; 𝜃 
𝐸𝑖  𝑆𝑖 𝑇𝑖 𝑋𝑠𝑖 , 𝑏𝑖 ; 𝜃 𝑓𝑏 𝑏𝑖 ; 𝜃 𝑑𝑏𝑖  2.4.3 

Where 𝑓𝑏  and 𝑓𝑌  are multivariate Gaussian density functions of 𝑏  and 𝑌  with 

respectively mean 0 and 𝑋𝐿𝑖𝛽 + 𝑍𝑖𝑏𝑖 , and variance-covariance matrix 𝐵  and  Σ𝑖 , 
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𝑕𝑖 𝑇𝑖  𝑋𝑠𝑖 , 𝑏𝑖 ; 𝜃  is the hazard function defined in (2.4.2) and recorded at the observed 

time.  𝑆𝑖 𝑇𝑖 𝑋𝑠𝑖 , 𝑏𝑖 ; 𝜃 = 𝑒− 𝑕𝑖 𝑇𝑖 𝑋𝑠𝑖 ,𝑏𝑖 ;𝜃 𝑑𝑡
𝑆𝑖

0    is the derived survival function. 

The maximum likelihood estimates can be calculated by iterative algorithms such as 

EM or Newton-Raphson algorithm (Rizopoulos, 2010). Zeng and Cai (2005) have 

shown that this estimator has good asymptotic properties. Guo and Carlin (2004) used 

a Bayesian approach to estimate these joint models. 

 

2.4.3.1 Convergence problems 

Joint models that use shared random effects have convergence problems. For 

example, equation (2.4.3) involves two integrals that do not have analytic solutions. 

The two integrals are usually approximated by numerical integration with Gauss-

Hermite and Gauss-Kronrod quadratures (Henderson et al., 2000; Rizopoulos, 2010). 

The numerical approximations of the integrals, mostly the Gauss-Hermite for the 

random effects makes the calculations to be slow. In fact, the integral over the random 

effects is usually multidimensional with size q.  

 

When q is less than 3, the Gauss-Hermite quadrature remains the standard method but 

in higher dimension settings when q is more than 3, alternative methods may be 

preferred to reduce the computational time. These methods include Laplace method, 

which was proposed by Rizopoulos et al. (2009) or a Monte Carlo method. Sene et al. 

(2014) noted that the structure of B does not intervene in the computational 

complexity, only the number q of random effects is limiting. 

 

In order to improve the accuracy and reduce the number of nodes in Gaussian 

quadratures, adaptive versions have been proposed (Lessaffre & Spiessens, 2001). 
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The adaptive versions consist of centering and rescaling the integral around its modal 

value until the nodes are systematically placed at the optimum position. The challenge 

with this technique is that it is time consuming because it requires a subject and 

iteration specific optimization to define the optimum position. In the effort of 

retaining the same precision but simplifying the numerical aspect, Rizopoulos (2011) 

developed a pseudo-adaptive version in which the integral is centered and rescaled 

according to the posterior distribution of the random effects defined in the linear 

mixed model in (2.4.1) but estimated separately and once for all in a first step. 

 

2.5 Other Types of Dependence 

Other types of dependency can be assumed. Instead of considering strictly random 

effects shared between the two sub models, another approach such as correlated error 

terms can be considered.  

 

2.5.1 Correlated error structures 

Joint models with correlated error structures have been used by Wang and Taylor 

(2001) and Henderson et al. (2000). Wang and Taylor (2001) used an integrated 

Ornstein Uhlenbeck process. Originally Faucett and Thomas(1996) and Wolfsohn and 

Tsiatis(1997) used a linear mixed model with only a random intercept and a random 

slope but any function of time can be considered in 𝑋𝐿𝑖(𝑡𝑖𝑗 ) and 𝑍𝑖(𝑡𝑖𝑗 )  in (2.4.1) to 

capture the best trajectory of the  repeated measures. 

Henderson et al. (2000) used latent Gaussian stochastic process shared by the 

longitudinal and time to event process. Verbeke et al. (2010) noted that there is 

conflict for information between the random effects structure and measurements error 

structure that assumes correlated errors. This is because both structures aim at 
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modeling the marginal correlation in the data. Further Verbeke et al. (2010) advised 

that it is necessary to opt for either correlated error terms or an elaborate random 

effect structures (that uses for splines in design matrix 𝑍𝑖). Both random effects and 

correlated error term should not be used at the same time. Tsiatis and Davidian (2004) 

provide more details on the differences between random effects and correlated error 

term.  

 

2.5.2 Model Formulation 

As it has already been said Henderson et al. (2000) proposed a method that uses 

correlated error structures. This sub section reviews the method for joint modeling of 

survival and longitudinal data proposed by Henderson et al. (2000) in their paper 

entitled “Joint modeling of longitudinal measurements and event time data”. 

Suppose that there are n individuals in a longitudinal study, studied for a period 

interval of (0, c]. The 𝑖𝑡𝑕 individual gives measurements 𝑦𝑖𝑗 , where 𝑗 = 1,2, … , 𝑛𝑖  at 

times 𝑡𝑖𝑗 , 𝑗 = 1,… , 𝑛𝑖 . The realizations of counting process {𝑁𝑖(𝑢) 𝑓𝑜𝑟 0 ≤ 𝑢 ≤ 𝜏 } 

for event time and predictable zero-one process {𝐻𝑖(𝑢) 𝑓𝑜𝑟 0 ≤ 𝑢 ≤ 𝜏 } that shows if 

an individual is at risk of having the event of interest, in our case the event of interest 

is death. 

 

Henderson et al. (2000) proposed a method for analyzing joint model on longitudinal 

measurement and time to an event. This method is the extension of the work of 

Wulfsohn and Tsiatis (1997). This method allows the survival and longitudinal data 

to be linked by latent stochastic process. Henderson et al. (2000) suggested latent 

bivariate Gaussian process, in which  𝑊𝑖 𝑡 = {𝑊1𝑖 𝑡 ,𝑊2𝑖(𝑡)} . The repeated 
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measurement process depends on 𝑊1𝑖 𝑡  while survival process depends on 𝑊2𝑖 𝑡 . 

The longitudinal measurement process takes the form: 

  𝑌𝑖 = 𝑢𝑖 𝑡𝑖 + 𝑊𝑖 𝑡𝑖 + 𝑒𝑖                                                                2.5.1 

In the equation 2.5.1,   𝑒𝑖  is an error term and is distributed as   𝑁(0, 𝑅𝑖) 

and 𝑉𝑎𝑟 𝑒𝑖𝑗  = 𝜍𝑒
2.  

In the equation 2.5.1,  𝑢𝑖 𝑡𝑖 = ((𝑢𝑖 𝑡𝑖1 ,… , 𝑢𝑖 𝑡𝑖𝑛𝑖  )𝑇  and 

  𝑊𝑖 𝑡𝑖 = ((𝑊𝑖 𝑡𝑖1 ,… ,𝑊𝑖 𝑡𝑖𝑛𝑖  )𝑇 .  In fact 𝑢𝑖 𝑡𝑖  is described as linear model, for 

example 𝑢𝑖 𝑡𝑖 = 𝑋1𝑖𝛽𝑀. 

For the latent process  𝑊1𝑖 𝑡  , Henderson et al. (2000) consider  𝑊1𝑖 𝑡 = 𝑈1𝑖 +

𝑈2𝑖(𝑡) where (𝑈1𝑖 , 𝑈2𝑖) is a bivariate normal random vector, which has zero mean and 

variance covariance 𝐺𝑖 =  
𝜍1

2 𝜍12
2

𝜍12
2 𝜍2

2  . 

It can be noted that model 2.5.1 and 2.1.2 are similar. In fact 𝑢𝑖 𝑡𝑖  in model 2.5.1 is 

𝑋1𝑖𝛽𝑀  in model 2.1.2, while 𝑊𝑖 𝑡𝑖  in 2.5.1 corresponds to  𝑄𝑖𝑠𝑖  in (2.1.2) with 

𝑠𝑖 = (𝑈1𝑖 , 𝑈2𝑖)
𝑇 . 

In joint model, the time to event process is modeled by using Cox proportional 

hazard model   

 𝑕𝑖(𝑡) = 𝑕0(𝑡)𝛼0(t)exp(𝑥2𝑖
𝑇 𝛽𝑠 + 𝑊2𝑖 𝑡 ).                                                      2.5.2 

In the equation 2.5.2, 𝛼0 t   is left unspecified in order to avoid the impact of the 

parametric assumptions. The longitudinal measurement and time to an event are 

assumed to be conditionally independent given 𝑊𝑖 𝑡  . In order to create association 

between two processes,  𝑊2𝑖 𝑡  is taken to be related to some components of 𝑊1𝑖 𝑡 . 

This has been achieved by using the following general equation 𝑊2𝑖 𝑡 = 𝛾1𝑈1𝑖 +

𝛾2𝑈2𝑖 + 𝛾3𝑊1𝑖(𝑡) . For instance, joint model with 𝑊2𝑖 𝑡 = 𝛾1𝑈1𝑖 + 𝛾2𝑈2𝑖  would 
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allow both random intercept 𝑈1𝑖  and slope  𝛾2𝑈2𝑖 involved in equation 2.5.1 to affect 

the risk event.  

 

To fit a model with random intercept only, the following formula: 𝑌𝑖𝑗 = 𝑋𝑖1
′ 𝛽1 +

𝑈𝑜𝑖 + 𝑍𝑖𝑗  for longitudinal sub model is used. The formula for hazard sub model is                        

𝑕𝑖(𝑡) = 𝑕0(t)exp{𝑋𝑖2
′ 𝛽2 + 𝛾𝑈𝑜𝑖 } (Phillipson et al., 2012). Joint model with random 

intercept and slope is modeled using following; 𝑌𝑖𝑗 = 𝑋𝑖1
′ 𝛽1 + 𝑈𝑜𝑖 + 𝑈1𝑖𝑡𝑖𝑗 + 𝑍𝑖𝑗  for 

longitudinal sub model and  𝑕𝑖(𝑡) = 𝑕0(t)exp{𝑋𝑖2
′ 𝛽2 + 𝛾(𝑈𝑜𝑖 + 𝑈1𝑖𝑡)}  for time to 

event sub model. Joint model with quadratic random effects is modeled using 

following; 𝑌𝑖𝑗 = 𝑋𝑖1
′ 𝛽1 + 𝑈𝑜𝑖 + 𝑈1𝑖𝑡𝑖𝑗 + 𝑍𝑖𝑗  for longitudinal sub model and  𝑕𝑖(𝑡) =

𝑕0(t)exp{𝑋𝑖2
′ 𝛽2 + 𝛾(𝑈𝑜𝑖 + 𝑈1𝑖𝑡 + 𝑈2𝑖𝑡

2)} for time to event sub model (Phillipson et 

al., 2012).  

 

2.5.3 Likelihood Function 

Marginal distribution for observed measurement is obtained by factorizing the 

likelihood for observed measurements and product of conditional distribution of event 

N given observed values of Y. Henderson et al. (2000) described the likelihood 

function as follows. 

 

Let 𝜃  represent combined vector of unknown parameters. The likelihood  𝐿 =

𝐿(𝜃, 𝑌, 𝑁) can be expressed as 

𝐿 = 𝐿𝑌𝑥𝐿𝑁|𝑌 = 𝐿𝑌 𝜃, 𝑌 𝑥 𝐸𝑤2|𝑌
[𝐿𝑁|𝑊2

 𝜃, 𝑁 𝑊2 ]                                         2.5.3 

In equation 2.5.3, 𝐿𝑌 𝜃, 𝑌  is a standard form corresponding to marginal normal 

distribution of 𝑌 conditional likelihood for event data,  𝐿𝑁|𝑊2
 𝜃, 𝑁 𝑊2  depicts any 
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likelihood contribution coming from achieved number of measures before any failure 

(Henderson et al., 2000). Let 𝐴0 𝑡 =  𝛼0
𝑡

0
 𝑢 𝑑𝑢 to represent cumulative baseline 

intensity, 𝐿𝑁|𝑊2
 can be written as 

𝐿𝑁|𝑊2
 𝜃, 𝑁 𝑊2 =

 [ [exp{ 𝑋2𝑖𝑡𝑖 (𝑡)′𝛽2 + 𝑊2𝑖 𝑡 𝛼0 𝑡 ]
∆𝑁𝑖(𝑡)𝑥 exp[− 𝐻𝑖

𝑇

0
exp{ 𝑋2𝑖 𝑡 

′𝛽2 + 𝑊2𝑖 𝑡 𝑑𝐴0(𝑡). 

To come up with 𝐿 requires an expectation with respect to distribution of infinite 

dimensions process 𝑊2 given longitudinal measurements 𝑌. 

 

2.5.4 EM Estimation 

For the EM algorithm, Henderson et al. (2000) extended the EM algorithm presented 

by Wulfsohn and Tsiatis (1997). The procedure works by iterating up to when 

convergence is reached. For the E step, consider random effects 𝑈 = (𝑈1, 𝑈2, 𝑈3)𝑇  as 

missing data. The expected value can be determined conditional on observed data 

(𝑌, 𝑁) for all 𝑕(𝑢) appearing in the (𝜃, 𝑌, 𝑁, 𝑈). This is the complete data likelihood. 

The conditional expectation can be expressed as 

𝐸 𝑕 𝑢  𝑌, 𝑁 = { 𝑕 𝑢 𝑓 𝑁 𝑈 𝑓 𝑈 𝑌 𝑑𝑢}|𝑓(𝑁|𝑌)                                       2.5.4 

Where 𝑓 𝑁 𝑌 =   𝑁 𝑈 𝑓 𝑈 𝑌 𝑑𝑢                                                                2.5.5 

In the equation 2.5.4 and 2.5.5, 𝑓 𝑁 𝑈  is the contributions of the 𝑖𝑡𝑕 subject to the 

event time of complete likelihood and  𝑓 𝑈 𝑌   is the conditional of random effects 

given longitudinal data. The term 𝑈 is low dimension, therefore is approximated by 

using Gauss-Hermite quadrature. The Gauss-Hermite quadrature is also used to 

evaluate the final log likelihood, log(𝐿 𝜃, 𝑌, 𝑁 = log(𝐸𝑈[𝐿(𝜃, 𝑌, 𝑁, 𝑈)|𝑌, 𝑁]. In the 

second step called maximization, the complete data likelihood is maximized. The 

𝑕 𝑢  function is replaced by its expectation.  
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2.5.5 Joint Latent Class models 

Apart from joint models with shared random effects. The alternative approach is joint 

latent class models (JLCM), which relies on a different idea. JLCM assumes that the 

population is heterogeneous and therefore can be divided into a finite number of 

homogeneous subgroups or classes. Each class or subgroup is characterized by a 

specific trajectory of the repeated measurement variable and a specific risk of event 

(Lin et al., 2002; Proust-Lima & Taylor, 2009). Proust-Lima et al. (2012) argue that 

the latent class structure can be seen as a latent stratification, which entirely captures 

the dependency between the longitudinal and survival processes.  

 

2.6 Extension of Joint Models 

In the previous sections, the discussion has focused on joint models based on a Cox 

model for right censored survival data and a LME model for longitudinal data. Other 

extensions of joint models for survival data and longitudinal data can also be 

considered. For example, for survival data, instead of using Cox proportion hazard 

model, other form of models can be used. These forms include accelerated failure 

time (AFT) models, models for interval censored data and models for recurrent 

events. 

 

For longitudinal data, nonlinear, generalized linear mixed models, semi parametric or 

nonparametric mixed models can be used. Wu et al. (2012) argued that whether a 

person uses different survival models and longitudinal models, basic ideas and 

approaches for inference are the same. This subsection reviews some of the 

extensions of joint models.  
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2.6.1 Joint Models Based on an Linear Mixed Effect Model and an Accelerated 

Failure Time Model 

In joint modeling of longitudinal and survival data, the AFT model can be used to 

model the survival process. This review focuses on an AFT model with measurement 

errors in time dependent covariates. For longitudinal data, the linear mixed effect 

models can be used. This review is based on the work of Tseng et al. (2005). A semi 

parametric AFT model can be expressed in the similar way as the Cox model: 

𝑕𝑖 𝑡 = 𝑕𝑜[  exp{−𝑧𝑖
∗

𝑡

0

 𝑢 𝛽}𝑑𝑢] 𝑒𝑥𝑝{−𝑧𝑖
∗(𝑡)𝛽} 

where 𝑕𝑖 𝑡  is the hazard function of the 𝑖𝑡𝑕 individual at time t, 𝑕0 𝑡  is the baseline 

hazard function, and 𝑧𝑖
∗(𝑡) is the unobserved true covariate value at time t for the 

observed measurements  𝑧𝑖(𝑡) . Tseng et al. (2005) proposed a likelihood method 

using an EM algorithm.  

The likelihood function for all observed data is be written as  

𝐿 𝜃 =   𝑓(𝑡𝑖 , 𝛿𝑖|

𝑛

𝑖

𝑧𝑖
∗, 𝑕0 , 𝛽)𝑓 𝑧𝑖

∗ 𝑤𝑖 , 𝛼, 𝜍2 𝑓(𝑤𝑖|𝑊)𝑑𝑤𝑖  

where  𝑓(𝑡𝑖 , 𝛿𝑖 |𝑧𝑖
∗, 𝑕0 , 𝛽) =  𝑕0 𝜙 𝑡𝑖 ; 𝜃, 𝑤𝑖  

𝜕𝜙  𝑡𝑖 ; 𝑧𝑖
∗∗,𝛽 

𝜕 𝑡𝑖 
 
𝛿𝑖

exp{− 𝑕0
𝑡𝑖 ; 𝑧𝑖

∗∗,𝛽

0
 𝑢 𝑑𝑢 

where 𝑧𝑖
∗∗  denotes the covariate history and 𝜙 is a known function. 

 

Wu et al. (2012) noted that handling the AFT structure in the joint modeling setting is 

more difficult than for the Cox model  because  𝑓(𝑡𝑖 , 𝛿𝑖|𝑧𝑖
∗, 𝑕0 , 𝛽) is more complicated 

and the baseline function 𝑕0𝜙 𝑡𝑖 ;  𝑧𝑖
∗∗, 𝛽  involves unknown quantities. Further, Wu et 

al. (2012) observed that the point mass function with masses assigned to all 

uncensored survival times 𝑡𝑖   cannot be used for the baseline hazard function 𝑕0.  In 

order to avoid this problem, Tseng et al. (2005) assumed the baseline hazard function 
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𝑕0 to be a step function that takes constant values between two consecutive failure 

times. Monte Carlo EM algorithm was used to obtain the MLEs. In the E step, Monte 

Carlo method was used to approximate the conditional expectations. The M step 

involves more complicated computations due to the complicated baseline hazard 𝑕0. 

 

2.6.2. Joint Models with Interval Censored Survival Data 

The previous sections have so far focused on right censored survival data. In some 

cases events are known to occur over certain time intervals. This kind of survival data 

is called interval censored. To simplify things, it will be assumed that all individuals 

were assessed at the same times.  

 

Let 𝑆𝑖  be the time to an event i.e. survival time for individual  𝑖 , with observed 

value 𝑠𝑖 . Let 𝑟𝑖 = (𝑟𝑖1, … , 𝑟𝑖𝑚 )𝑇  denote the vector of event indicators such that 𝑟𝑖𝑗 = 1  

if individual  𝑖  has an event occurred from time 𝑡𝑗−1 to time  𝑡𝑗 , and let 𝑟𝑖𝑗 = 0  

otherwise for 𝑖 = 1,2, … , 𝑛;  𝑗 1,2, … ,𝑚. Assume that 𝑟𝑖1 = 0  for all 𝑖.  

Let 𝑝𝑖𝑗 = 𝑃 𝑡𝑗−1 ≤ 𝑆𝑖 < 𝑡𝑗    and let  𝜋𝑖𝑗 = 𝑃 𝑡𝑗−1 ≤ 𝑆𝑖 < 𝑡𝑗   𝑆𝑖 ≥ 𝑡𝑗−1 = 1 −

𝑃 𝑆𝑖 ≥ 𝑡𝑗   𝑆𝑖 ≥ 𝑡𝑗−1 .  

Then, it follows that  𝑝𝑖𝑗 =  1 − 𝜋𝑖1 ,  1 − 𝜋𝑖1 … (1 − 𝜋𝑖,𝑗−1)𝜋𝑖𝑗 . The probability 

function for the event indicator vector 𝑟𝑖  can be written as 

𝑓(𝑟𝑖) =  𝑝
𝑖𝑗

𝑟𝑖𝑗𝑚
𝑖 =  𝜋

𝑖𝑗

𝑟𝑖𝑗𝑚
𝑖 (1 − 𝜋𝑖𝑗 )1−𝑟𝑖𝑗                                           2.6.1 

It can be noted that equation 2.6.1 is the probability function for a Bernoulli 

distribution. Further the observed error prone covariate value 𝑧 can be introduced and 

𝑧𝑖
∗ is its true value. Again assume  
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log − log 1 − 𝜋𝑖𝑗   = 𝛽𝑇𝑧𝑖 
∗ + 𝛾𝑗  , where 𝛽  and 𝛾 = (𝛾1, 𝛾2, … 𝛾𝑚)𝑇  are unknown 

parameters. Then the probability function of 𝑟𝑖  can be written as  𝑓(𝑟𝑖  |𝑧𝑖
∗, 𝛽, 𝛾) . 

Denote 𝜃 as the collection of all parameters in all models, the likelihood for observed 

data can be expressed as:  

𝐿0 𝜃 =  [ 𝑓(𝑧𝑖  |𝑤𝑖 , 𝛼, 𝜍)𝑓(𝑟𝑖  |𝑤𝑖 , 𝛽, 𝛾) 𝑓(𝑤𝑖  |𝑊)𝑑𝑤𝑖]
𝑛
𝑖=1                          2.6.2 

In the equation 2.6.2,  𝑓(𝑧𝑖  |𝑤𝑖 , 𝛼, 𝜍) is the conditional probability density function, 

given the random effects   𝑤𝑖  and 𝑓(𝑤𝑖  |𝑊)  be the marginal probability density 

function for 𝑤𝑖  with covariance matrix 𝑊.  

Maximum likelihood estimators (MLE) of parameters 𝜃  can be calculated by 

maximizing the observed data likelihood 𝐿0 𝜃 . 

Evaluating 𝐿0 𝜃  can be difficult because it involves an evaluation of intractable and 

possibly high-dimensional integral (Wu et al., 2012). Monte Carlo EM algorithms can 

be used.  

 

2.6.3. Generalized Linear Mixed Models and Nonlinear Mixed Effects Models for 

Longitudinal Data 

So far, this study has focused on LME models for modeling the longitudinal data. It is 

also possible to consider other types of models for longitudinal data. Wu et al. (2008) 

and Wu et al. (2010) considered nonlinear mixed effects (NLME) models for 

modeling the longitudinal data in joint models. When the longitudinal data is not 

normally distributed, generalized linear mixed models (GLMMs) can be used. 

GLMMs are nonlinear models and also empirical models. 

When dealing with longitudinal models that are nonlinear, both two-stage and 

likelihood approaches for joint models may still be applied (Wu et al., 2012). The 
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major challenge with this type of models is that computation is more demanding 

because of the nature of nonlinearity of the longitudinal models. 

 

2.6.4. Joint Models with Missing Data 

Survival models with measurement errors in time dependent covariates have received 

much attention in the joint models literature. Another common situation is 

longitudinal models with informative dropouts, in which survival models can be used 

to model the dropout process. In both cases the focus is on creating association 

between longitudinal and survival processes. Joint models have also been considered 

in which the focus is on more efficient inference of the survival model by using 

longitudinal data as auxiliary information (Xu & Zeger, 2001; Faucett et al., 2002; 

Hogan & Laird, 1997) or assume that the longitudinal process and the survival 

process to be governed by a common latent process (Henderson et al., 2000). 

When missing data are non ignorable, missing data process is normally included in 

inferential procedures. It is easy to incorporate missing data mechanisms in joint 

model inference that use likelihood methods (Wu et al., 2012). However the 

computation becomes more challenging. Wu et al. (2008) and Wu et al. (2010) 

considered the missing data problems for joint models by using Monte Carlo EM 

algorithms and Laplace approximations. 

 

2.6.5 Models with Longitudinal data and Competing Risks 

Standard methods for joint modeling of longitudinal and survival data allow for one 

event with a single mode of failure and an assumption of independent censoring. 

When there are several reasons why an event can happen, or other informative 

censoring happens, it is known as competing risks (Williamson et al., 2008). The 
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standard methods are not applicable to survival data with competing risks or 

informative censoring (Elashoff et al., 2007). 

 

Elashoff et al. (2007) proposed a method for analyzing longitudinal measurements 

and competing risks failure times that allow for more than one distinct failure type. 

The method handles informative censoring by treating it as a competing risk in the 

model. It can also be used to model non ignorable missingness after event times. The 

longitudinal data is modeled using linear mixed effects and a mixture sub model is 

used to analyze competing risks survival data. The mixture model for competing risks 

enables one to evaluate the effects of some factors on both the marginal probabilities 

of occurrence of the risks and the conditional cause specific hazards. Parameters were 

estimated using an EM algorithm in both sub models.  

 

Williamson et al. (2008) proposed a method that uses cause specific hazards sub 

model to allow for competing risks with a separate latent association between 

longitudinal measurements and each cause of failure. The joint analysis longitudinal 

measurements and competing risks failure time data is more challenging as compared 

to joint analysis of longitudinal measurements and survival data with a single failure 

type (Elashoff et al., 2007).  

 

2.6.6 Joint Models with Multivariate Longitudinal data Outcome 

Joint models can also be extended to multivariate cases. The longitudinal processes 

and event processes can be modeled simultaneously. Computation for joint models of 

this type is more challenging as compared to univariate cases (Xu & Zeger, 2001; 

Song et al., 2002).  
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Chi and Ibrahim (2006) proposed a likelihood approach that extends both longitudinal 

and survival components to multi-dimensional. A multivariate mixed effects model is 

used to capture dependence among longitudinal data over time and also dependence 

between different variables. For the survival component of the joint model, a shared 

frailty was introduced in order to induce correlation between failure times. The 

marginal univariate survival model is then applied to each marginal survival function. 

The multivariate survival model has a proportional hazards structure for the 

population hazard when the baseline covariates are specified through a specific 

mechanism. This method is also capable of modeling survival functions that have 

different cure rate structures.  

 

Rizopoulos and Ghosh (2011) proposed a semi parametric multivariate joint model, 

which relates multiple longitudinal outcomes to time to event. In order to allow for 

greater flexibility, key components of the model were modeled non-parametrically. 

For the subject specific longitudinal evolutions a spline based approach was used. 

Baseline risk function was assumed to be piecewise constant. Distribution of the 

latent terms was modeled using a Dirichlet process prior formulation. 

 

Baghfalaki et al. (2014) proposed a method for analyzing multivariate longitudinal 

data comprising of mixed continuous and ordinal responses and a time to event 

variable. The association structure between longitudinal mixed data and time to event 

data was modeled using a multivariate zero-mean Gaussian process. Discrete ordinal 

data was modeled by making an assumption that a continuous latent variable follows 

the logistic distribution. Continuous data was modeled by using a Gaussian mixed 

effects model. Baghfalaki et al. (2014) used an accelerated failure time model for the 
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event time variable. Parameters were estimated by a Bayesian approach that uses 

Markov Chain Monte Carlo.  

 

2.7 Model Selection 

In some cases, it becomes necessary to compare models, which are not nested. 

Models, which are nested, can be compared using the likelihood ratio test. Models 

that are not nested can be compared using approaches such as the Akaike information 

criterion (AIC) and Bayesian Information Criteria (BIC). AIC is defined as 

𝐴𝐼𝐶 =  −2𝑙 +  2 𝑘 +  𝑤                                                                                 2.7.1 

where 𝑙 is the log-likelihood, 𝑘 is the number of covariates in the model and w is the 

number of model specific ancillary parameters. The term 2(𝑘 + 𝑤) in equation 2.7.1 

can be thought of as a penalty for including extra predictors in the model. Smaller 

values of AIC suggest a better model (Hedeker & Gibbon, 2006). Another approach 

for model selection is BIC. BIC may be written as  

 𝐵𝐼𝐶 = −2𝑙 +   𝑘 +  𝑤 ln(𝑛), where  ln(𝑛)  is the log of the sample size 𝑛 . The 

model is considered to be better if it has smaller the value of BIC (Hedeker & 

Gibbons, 2006). 

 

The deviance information criterion (DIC) is considered as a hierarchical modeling 

generalization of the AIC and BIC.  DIC is useful in Bayesian model selection 

problems, in which posterior distributions of the models are obtained by Markov 

chain Monte Carlo (MCMC) simulation. The problem of using AIC, BIC and DIC is 

that there are no formal statistical tests to compare different AIC values, different BIC 

values, and different DIC values respectively. Just like AIC and BIC, DIC is 

asymptotic approximation as the sample size becomes large. This approach is valid 
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when posterior distributions are approximately multivariate normal. AIC has been 

used in this thesis in order to compare models. AIC penalizes the number of 

parameters less strongly than does the Bayesian information criterion (BIC).   
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CHAPTER 3 METHODOLOGY 

 

3.1 Introduction 

Chapter 3 describes the methodology used in this study. In particular, study design, 

data collection and data analysis and likelihood function for joint model are described. 

 

3.2 Study design 

The study used secondary data, which was collected at Queen Elizabeth Central 

Hospital, in Malawi. The study design used was prospective cohort study, and 

participants were followed for a period of 14 weeks. The study participants were 

randomized into two groups using block randomization. The first group received corn 

soya blends (CSB), and other group received ready to use therapeutic food (RUTF). 

In total there were 491 participants, of these 246 received CSB and 245 received 

RUTF.  In this study, weight of patients were measured at fixed times (4 times) for a 

total duration of 14 weeks (3 and half months). Ethical approval was received from 

the College of Medicine Research Ethical Committee (COMREC). 

 

3.2.1 Participants and Duration 

The study registered male and female who were HIV positive and were at least 18 

years old. Participants were excluded if they were pregnant women, mothers who 

were breastfeeding and were participating in another supplementary feeding program. 

The study took place in the year 2006. 
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3.3 Nutritional Value of Food Supplements 

The nutritional contents of the CSB and RUTF supplementary foods are given in 

Table 1. Nutritional contents given to patients in the CSB and RUTF supplementary 

foods were almost similar. 

 

Table  1: Nutritional contents available in Corn Soya Blends and Fortified 

 Ready to use therapeutic 

food (RUTF) 

Corn-soy blended 

flour (CSB) 

Estimated Average 

Requirements 

 (245 g/day) (374 g/day) Women  Men  

Energy (kJ)  5694 5694 13252 13252 

Protein (g)  35.5 50 46 56 

Fat (g)  91 26.2 - - 

Calcium (mg)  830 258 1000 1000 

Phosphorus (mg)  700 1050 580 580 

Magnesium (mg)  240 500 255 330 

Potassium (mg)  2880 1700 4700 4700 

Selenium (μg)  78 22 45 45 

Zinc (mg)  8 8 8 11 

Copper (mg)  0.9 2.9 0.9 0.9 

Iron (mg)  8 16 18 8 

Vitamin A (μg)  710 1040 700 700 

Vitamin C (mg)  90 26 60 75 

Vitamin D (μg)  5 5 6 5 

Vitamin E (mg)  52 32.5 12 12 

Niacin (mg)  14 13 11 12 

Folic acid (μg)  400 153 320 320 

Thiamine (mg)  1.1 1.3 0.9 1.0 

Riboflavin (mg)  1.3 0.8 0.9 1.1 

Vitamin B-6 (mg)  1.3 1 1.1 1.1 

Vitamin B-12 (μg)  1.4 0.5 2.0 2.0 

 

Source: Ndekha et al (2009) 



58 
 

3.4 Data Description 

The dataset had the following variable: type of food supplement given to the 

participants, sex of participant, TB status of patient, whether participant was receiving 

cotrimoxazole or not, age of participant in years, CD 4 count of participant, and 

hemoglobin level of participant. The categorical variables were coded as follows: type 

of food supplement was coded as 1 if participant was receiving CSB and 0 if 

receiving RUTF. Sex of participants was coded 0 if participant was female and 1 

when participant was male. If participant had TB it was coded 1 and 0 otherwise. If 

participant was receiving cotrimoxazole, it was coded 1 and 0 otherwise. Body mass 

index was a continuous variable and was measured in kg / m
2
. Body mass index was 

the only repeated measurement variable. Each participant was expected to have 4 

visits. Hemoglobin level of participants was a continuous variable and was measured 

in mg/dl. CD 4 lymphocytes count of the patients was also measured. Survival time 

was measured in weeks. 

  

3.4.1 Missing Data 

As it has already been stated, this study used secondary data.  The study used a 

complete dataset.  

 

3.5 Data Analysis 

3.5.1 Exploratory Data Analysis 

The exploratory data analysis was done using statistical package called R, version 

2.15.2. For categorical variables such as sex, TB status, proportions were used to 

summarize the categorical variables. Mean and standard deviation were used if the 

variable was continuous and normally distributed. Median and inter quartile range 
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were used if the variables were skewed. Confidence intervals were calculated at 95% 

where appropriate. Hypotheses were tested at 5% level of significance. 

 

For each visit, the BMI for the participants in 2 groups were compared using a t test at 

5% level of significance. Histograms for age, BMI, CD 4 count and hemoglobin level 

were plotted. Also graph subject specific evolutions in time for BMI were plotted for 

the 2 groups receiving food supplement, namely CSB and RUTF. Kaplan Meir graph 

was plotted in order to assess the survival of the 2 groups receiving different food 

supplements.  

 

3.6 Model Fitting 

3.6.1 Model for Survival Analysis 

This model was fitted using survival package in R. The package survival is able to fit 

Cox proportion model with either time independent covariate model or time 

dependent covariate model. Cox proportion model with time dependent model was 

fitted. The dependent time covariate Cox model has been described in section 2.2.5. 

The model has age, sex, CD4 count and hemoglobin level as baseline time 

independent covariates and body mass index was fitted as a time dependent covariate. 

 

3.6.2 Model for Longitudinal Data 

This longitudinal model was fitted using R package called “nlme”. The linear mixed 

effect regression model was fitted. In the model body mass index was outcome 

variable, while age, sex, CD4 count hemoglobin level were independent variables. 

The linear mixed effects regression model has been discussed already in section 

2.1.1. The model with intercept and random slope were used. 
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3.6.3 Model fitting for Joint Modeling 

Joint modeling analysis was done in R. Statistical package joineR used to analyze 

data in this study was developed based on the work of Henderson et al. (2000) and 

Wulfsohn and Tsiatis (1997). JoineR package provide a function for fitting Wulfsoln 

and Tsiatis models called joint. This function permits the user to choose from three 

models for the joint random effects namely; random intercept; random intercept and 

slope; and quadratic random effects (Phillipson et al., 2012). Other function in joineR 

is jointdata, which supplies the data for analysis. Surv object provide survival data 

and long provide longitudinal data.  

 

 3. 7 Confidence Intervals and Standard Errors for Joint Model 

The joineR uses bootstrap methods to calculate confidence intervals and standard 

errors. Phillipson et al. (2012) described bootstrap is a general computational tool that 

can be used to assign measures of accuracy to statistical estimates. Phillipson et al. 

(2012) further described how confidence intervals and standard errors were calculated 

in joiner using bootstrap method. The method works by generating N independent 

bootstrap samples {W
*1

}, {W
*2

},. . . ,{W
*N

}. Every independent sample contains n 

data values drawn randomly with replacement from the original data {W}. In this 

case, original data comprises of both longitudinal and survival outcomes including 

survival time, censoring indicator, longitudinal measurements and treatment type 

(Phillipson et al., 2012). 

 

Standard error of an estimate θ is obtained by calculating sample standard deviations 

of the N bootstrap samples. Confidence intervals are calculated as follows: Let θ
*(1)

 < 

. . . < θ
*(N)

 represent the ordered bootstrap replications of θ. The 95% confidence 
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interval for θ is approximated by (θ
*(0.05N),

 θ
*(0.95N)

) (Phillipson et al., 2012). Joiner 

uses joint.se function to calculate confidence intervals and standard errors. 

 

The package joiner used for joint modeling survival and longitudinal data does not 

produce the p values. Therefore in order to assess whether the variable is significant 

or not, confidence intervals are used. If the confidence interval range contains 1, the 

variable is significant, if the confidence interval range does not contain 1, then the 

variable is not significant.  
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CHAPTER 4 RESULTS 

 

 

Chapter 4 contains an analysis of the data collected and interpretations of the findings 

of this study. 

  

4.1 Exploratory Data Analysis 

The study interviewed 491 HIV positive patients who were starting antiretroviral 

therapy (ART). Out of these, 294 (59.8%) were female and 197 (40.1%) were male. 

The study participants were randomized into 2 groups, 246 patients were given corn 

soya blends (CSB) and 245 patients were given ready to use therapeutic food (RUTF). 

The median age was 33.8 years with inter-quartile range of (28.2 - 41.7 years), 

median age for women was 31.7 years with inter-quartile range of (26.9- 37.9 years) 

and for men was 37.4 years with inter-quartile range of (32.0- 45.0 years). Median age 

for group getting CSB was 34.0 years, for group receiving RUTF was 33.1 years. 

More than two thirds (68.8%) of the participants received cotrimoxazole. For group 

receiving CSB, 67.1% were receiving cotrimoxazole, 70.6% of participants in RUTF 

group received cotrimoxazole. The mean hemoglobin level was 9.7 mg/dl with 

standard deviation of 2.1 mg/dl. Among patients receiving CSB, mean hemoglobin 

level was 9.8 mg/dl and standard deviation was 2.2mg/dl. Mean hemoglobin level for 

RUTF group was 9.5mg/dl and standard deviation was 2.0 mg/dl. Median CD4 count 

for the participants was 90; with inter quartile range of (33-184). Patients who were 

receiving CSB had median CD4 count of 91, with inter quartile range of (33-185); 
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those who were receiving RUTF had median CD4 count of 88; with inter quartile 

range of (34-182).  Almost one fifth of the participants (21.8%) had tuberculosis (TB). 

Out of 491 patients, who participated in this study, 27.7% died. Among participants 

receiving CSB, 26.0% died and 29.4% of participants receiving RUTF died. Among 

female 24.5% died, CI (19.7%, 29.8%); while among male 32.5% died, CI (26.0%, 

39.5%), Refer Table 2. 

 

Table  2: Descriptive Results for Participants According Food Supplement 

Groups 

    

Food Supplement Group receiving 

CSB(n= 246) 

Group receiving 

RUTF(n=245) 

All participants 

(n= 491)  

Sex    

     Female 142 (57.3%) 152 (62.0%) 294(59.9%) 

     Male 104 (42.3%)    93 (38.0%) 197(40.1%) 

Age in years- median(inter 

quartile range) 

34.0(29.9- 42.1) 33.1(28.8- 41.3) 33.8(28.2-41.7) 

          Male  38.6(32.2-45.0) 36.9(31.6-45.4) 37.4(32.0-45.0) 

        Female  31.3(26.5-38.9) 31.9(27.1-37.5) 31.7(26.9-37.9) 

No of patients Died     64(26.0%) 72 (29.4%) 136(27.7%) 

      Female who died 42(27.6%) 30(21.1%) 72 (24.5%) 

      Male who died 32 (32.3%) 32(32.7%) 64 (32.5%) 

Number of patients on 

Cotrimoxazole 

165 (67.1%) 173(70.6%) 338(68.8%) 

Hemoglobin- mean(sd) 9.8 (2.2) 9.5 (2.0) 9.7(2.1) 

CD 4 Count of participants 

median(inter quartile range) 

91(33 – 185) 88 (34 – 182) 90 (33 – 184) 

No of patients with TB 60(24.5%) 47(19.7%) 107(21.8%) 
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Body mass index (BMI) was calculated for all the visits. See Table 3 that gives values 

of the BMI for the study participants.  At the enrolment time, mean BMI was 16.5 

kg/m
2
, with standard deviation of 1.4 kg/m

2
. Mean BMI for group receiving CSB was 

16.5 kg/m
2
 and 16.5 kg/m

2
 for group receiving RUTF. There was no significant 

difference in BMI for patients who were receiving CSB and RUTF, t test = 0.36, p 

value = 0.717. Second visit took place 2 weeks later, at that time the mean BMI for all 

the study participants was 17.0 kg/m
2
, with standard deviation of 1.6 kg/m

2
. Mean 

BMI for both groups was at 17.0 kg/m
2
. No significant difference was detected during 

second visit, t test = 0.01, p value = 0.992. During the third visit, BMI for group 

receiving CSB was 17.5 kg/m
2
 and BMI of group receiving RUTF was 17.7 kg/m

2
. 

There was no significant difference in the BMI of the two groups, t test = 1.33, p 

value = 0.184. During forth visit, BMI for the group receiving CSB was 17.8 kg/m
2
 

and BMI for the group receiving RUTF was 18.3 kg/m
2
. There was a significant 

difference in BMI of the two groups, t test = 2.38, p value = 0.018. At the visit 5 (14 

weeks after the initiation of treatment) BMI for group receiving CSB was 18.4 kg/m
2
 

and that of group receiving RUTF was 19.0 kg/m
2
. There was a significant difference 

of BMI between the two groups of patients, t test 2.98, p value = 0.003. This means that 

group receiving RUTF had higher BMI than group receiving CSB after 10 weeks of 

treatment. 
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Table 3: BMI for Patients Receiving CSB and RUTF at Different Times of 

Follow up 

BMI All participants CSB RUTF T statistic P value 

Visit 0 mean(sd) 16.7(1.4) 16.5(1.4) 16.5(1.5) 0.36 0.717 

Visit 1 mean(sd) 17.0(1.6) 17.0(1.5) 17.0(1.6) 0.01 0.992 

Visit 2 mean(sd) 17.6(1.8) 17.5(1.7) 17.7(1.8) 1.33 0.184 

Visit 3 mean(sd) 18.1(2.0) 17.8(1.8) 18.3(2.1) 2.38 0.018 

 Visit 4 mean(sd) 18.7(2.0) 18.4(1.8) 19.0(2.1) 2.98 0.003 

 

NOTE:  1. t test compares BMI for participants who were receiving CSB and RUTF 

              2. BMI was measured in kg/m
2 

 

4.1.1 Distribution of Variables 

Body mass index (BMI) and Hemoglobin level were normally distributed. Age was 

skewed to the left, while CD4 count was highly skewed to the left, Refer Figure 1. 
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Figure   1: Distributions of BMI, Age, Hemoglobin Level and CD4 Count 
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Patients who were receiving CSB and RUTF had different variability in their 

longitudinal profiles for the body mass index (BMI), refer Figure 2. 

 

 

Figure   2: Subject Specific evolutions in time of Body Mass Index for CSB and 

RUTF 

There was no difference in the survival of patients in the first 2 weeks. After week 2, 

the group that was receiving CSB has slightly higher survival than the group receiving 

RUTF, refer Figure 3. But there was no significant difference in the survival between 

patients who were receiving CSB and RUTF, using log rank test, Chi square= 0.9, 1 

degree of freedom, p value = 0.342  
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Figure   3: Kaplan Meier Graph for Participants Receiving CSB and RUTF 

 

4.2 Survival Data Analysis 

4.2.1 Time Dependent Cox Model 

Results from Cox proportional hazards models with time dependent covariates are 

presented in Table 4. The group that was given RUTF had a higher risk of death, HR 

= 1.2, 95% CI (0.953, 1.511), however, this was not significant, p value = 0.120. 

Body Mass Index (BMI) had effect on the survival of patients, HR = 0.636, 95% CI 

(0.592, 0.683), p value < 0.00001. This means that as BMI increases by 1kg/m
2
, the 

risk of death decreases by 36%. Male patients had a higher risk of death as compared 

to female patients, HR= 1.4, 95% CI (1.116, 1.830), p value = 0.005. This means that 

male had 1.4 times hazard of death as compared to women. Age of a patient had an 
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effect on the time to death, HR = 1.02, 95% (1.003, 1.026), p value = 0.016. As the 

age of person increased by 1 year, the hazard of death increased by 2 %. CD4 count 

had no effect on the survival of patients, HR = 1.0, 95% CI (0.999, 1.001), p value = 

0.235. Hemoglobin level of patient had effect on survival, HR = 0.80, 95% CI (0.753, 

0.854), p value <0.0001, this means as the hemoglobin level of patient increases by 1 

mg/dl, the hazard of death for that patient decreases by 20%. TB status of a patient 

had no effect on survival of patients, HR = 1.08, 95% CI (0.968, 1.189), p value = 

0.182. Receiving cotrimoxazole, had effect on survival of patients, HR = 0.36, 95% 

CI (0.287, 0.457) p value < 0.00001. Patients who were receiving cotrimoxazole had a 

lower risk of death compared to patients who were not receiving cotrimoxazole. 

Receiving cotrimoxazole reduces the hazard of death by 64%. Wald test had a value 

of 275.5 and p value <0.0001. Also both Likelihood test and score (Log rank) test had 

p value < 0.0001. All the three tests are significant, providing evidence that at least 

one of the coefficients is significantly associated with the time to death of the patient. 
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Table 4: Results from Cox Model with Time Dependent Covariates 

 

Parameter Exp 

(coefficient) 

Std Error 95% Confidence 

Interval 

Z   P value 

Food type(RUTF) 1.201 0.118 (0.953, 1.511 ) 1.556    0.1197 

BMI 0.636 0.037 (0.592, 0.683 ) -12.394 < 0.0001 

Sex (Male) 1.429 0.126 (1.116, 1.830) 2.829    0.0047 

Age  1.014 0.006 (1.003, 1.026 ) 2.414    0.0158 

CD4 Count 1.000 0.0003 (0.999, 1.001 ) 1.189    0.2346 

Hemoglobin 0.802 0.032 (0.753, 0.854) -6.845 < 0.0001 

TB 1.073 0.523  (0.968, 1.189) 1.335    0.1819 

Cotrimoxazole (Yes) 0.363 0.119  (0.287, 0.457 ) -8.555 < 0.0001 

      

Wald Test 275.3 P value < 0.0001 

Likelihood Test 282.8 P value < 0.0001 

Score(Log rank )Test 294.0 P value < 0.0001 

 

 

4.3 Longitudinal Data Analysis 

In order to assess the effects of BMI over a long period of time, mixed effects model 

was fitted. Dependent variable was BMI. The mixed effect model was fitted with 

random intercept and slope. Table 5 shows the results of this model. In the model, 

type of food supplements has a coefficient of 0.160, which means that mean BMI of 

group getting RUTF is 0.160 higher than BMI of group getting CSB. But these results 

were not significant, p value = 0.2600. Sex of a person did not have effect in the 

changes of BMI, p value = 0.2655. CD4 count did not have significant effect on BMI, 
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p value = 0.5298. Hemoglobin level had an effect in the changes of BMI. Increase in 

BMI by 1kg/m
2
 increases hemoglobin level of a patient by 0.0915, p value = 0.0085. 

Receiving cotrimoxazole was not significant, p value = 0.9204. TB status of a person 

did not have significant effect on the changes of BMI, p value = 0.0787. 

Table 5: Results from Longitudinal Data 

 

Parameter  Estimate  Std Error 95% CI P value 

Intercept  14.956 0.430 ( 14.113, 15.802 ) <0.00001 

Time  0.458 0.014 ( 0.430, 0.488 ) <0.00001 

Food type 0.1601 0.142 ( -0.119, 0.439 ) 0.2600 

Sex  -0.1702 0.153 ( -0.470, 0.130) 0.2655 

CD4 Count 0.0003 0.0005 (-0.0006, 0.0012 ) 0.5298 

TB -0.1264 0.07174 ( -0.267,0.015) 0.0787 

Cotrimoxazole 0.0155 0.1550 (-0.289,0.320  ) 0.9204 

Hemoglobin  0.0915 0.034 (  0.023, 0.159) 0.0085 

Age  0.0183 0.007 (  0.004, 0.032) 0.0103 

AIC 6543.135    

BIC 6604.816    

Log likelihood -3260.567    

 

Trajectories for the body mass index for the patients who were censored and those 

who died were plotted. The trajectories are shown in Figure 4. 
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Figure   4: Trajectories for Body Mass Index 

 

4.4 Joint Modeling Results 

Table 6 presents results for joint modeling. Type of food did not have effect on 

survival of patient. This had a coefficient of 0.222 and a 95% confidence interval of 

(13.707, 15.135). Sex of patient had significant effect on survival of patient, 

coefficient = 0.507, 95% CI (0.150, 0.515). The hazard ratio was  𝑒0.507 = 1.66. This 

means male patients were at higher risk of dying than female patients. Age of patient 

did not have significant effect on survival of participants, 95% CI (-0.012, 0.018). 

Those patients who were receiving cotrimoxazole had lower risk of death as 

compared to patients who were not receiving, coefficient = - 0.922,                        

95% CI (-1.391, -0.648). The hazard ratio (HR) was   𝑒−0.922 = 0.398 . Receiving 
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cotrimoxazole had an effect on time to death of patients. Patients who were receiving 

cotrimoxazole had lower risk of death than patients who were not receiving.  

 

Patients who had higher levels of hemoglobin had lower risk of death as compared to 

patients with lower levels of hemoglobin, coefficient = - 0.274, 95% CI (-0.403, - 

0.201).  The hazard ratio (HR) was    𝑒−0.274 = 0.761  . Hemoglobin level had an 

effect on time to death of patients. 

 

Table 6 also presents results longitudinal sub model. Type of food did not have 

significant effect on BMI, 95% CI (-0.266, 0.218). CD4 count of a patient has effect 

on BMI of the patient. Increase in BMI by 1 kg/m
2
, increases CD4 count by 0.001. 

This was significant, 95% CI (0.0002, 0.0022).  Receiving cotrimoxazole had no 

effect on the BMI of the patient. Hemoglobin level had effect on the BMI of a patient. 

In fact increase of BMI by 1 kg/m
2
, increases hemoglobin level of patients by 0.12.  

 

In Table 6, the joint model the latent association, 𝛾    is -0.178. The latent association 

quantifies the effect of longitudinal outcome to the risk of death. In our case the latent 

association measures the effect of body mass index (BMI) to the time to death. There 

is significant association between BMI and survival of a patient, 95% CI (-0.241, -

0.141). The hazard ratio for increase the relation of BMI and survival of a patient is 

0.84(𝑒−0.178). Body Mass Index (BMI) had effect on the survival of patients HR = 

0.84.This means that as BMI increases by 1 kg/m
2
, the risk of death decreases by 

16%. Variance for random intercept was 1.76; variance for random slope was 0.21; 

and residual variance was 0.35. 
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Table 6: Results from Joint Model 
 

Longitudinal 

Model 

Parameter   Estimate -

coefficient 

Std 

Error 

95% CI 

 Intercept   14.492 0.376 (13.707, 15.135)* 

 Time   0.403 0.026 (   0.339,  0.450)* 

 Food type  -0.003 0.124 (-0.266, 0.218) 

 Sex   -0.039 0.135 (-0.327, 0.227) 

 Age   0.022 0.006 (0.006,  0.034)* 

 CD4 Count  0.001 0.001 (0.0002,  0.002)* 

 Cotrimoxazole  0.060 0.132 (-0.349, 0.282) 

 Hemoglobin  0.119 0.034 (0.068,   0.187)* 

 TB  -0.143 0.075 (-0.349, -0.023)* 

Survival Model Parameter  Exp(coef) Estimate -

coefficient 

Std 

Error 

95% CI 

 Food type 1.245 0.223 0.152 (-0.043,  0.515) 

 Sex  1.660 0.507 0.193 (0.150,  0.890)* 

 Age  1.004  0.004 0.008 (-0.012,  0.018) 

 CD4 Count 0.997 -0.003 0.001 (-0.002,  0.0003) 

 Cotrimoxazole 0.398 -0.922 0.168 (-1.391, -0.648)* 

 Hemoglobin 0.761 -0.274 0.046 (-0.403, -0.201)* 

 TB 1.109 0.103 0.080 (-0.081,   0.257) 

   Estimate -

coefficient 

Std 

Error 

95% CI 

Latent Association  -0.178 0.026 ( -0.241, -0.141) 

Variance for random intercept Uo  1.764 0.144 (  1.455, 2.001) 

Variance  for random slope U1  0.201 0.0181 (  0.163,0.234) 

Residual variance  0.348 0.035 ( 0.291, 0.415) 

AIC  6443.14   

BIC  6503.82   

Log likelihood  -3307.66   

Note: *shows that results were significant  
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4.5 Comparison of Joint Models and Separate Models 

Table 4 and Table 5 show results produced by separate models. Table 6 gives the 

results from joint modeling. For instance, it was observed that some variables like 

CD4 count and TB status did not have significant effect on body mass index (BMI) in 

the separate model. However in joint model CD4 count and TB status had significant 

effect on body mass index. It was also found age of patient had significant effect on 

the survival of the person in the separate model; however in the joint model age was 

not significant on the survival of a person. In the longitudinal, variables like age; 

Hemoglobin; had effect on the body mass index of patients in both separate and joint 

model. Also intercept and time were significant both in separate and joint models.  

Type of food supplement, sex of person did not have significant effect on the body 

mass index (BMI) in both separate and joint models. 

 

In terms, of standard errors, most of variables in the joint model had smaller standard 

errors as compared to the same variables in joint model. For instance, type of food 

supplements had a standard error of 0.142 in separate model; and in joint model it had 

standard error of 0.124. Also CD4 count, sex, TB status, use of cotrimoxazole had 

smaller standard errors in joint model than in separate models, Refer Tables 5 and 6. 

Most of variable in joint models in the longitudinal sub model had shorter range of 

confidence intervals, Refer Tables 5 and 6. Narrow confidence intervals are more 

desirable that wider confidence intervals. 

   

The models were compared using log likelihood. Model produced by separate 

longitudinal model had a log likelihood of -3260.57 and that of joint model was -

3140.66. Model produced by longitudinal model has AIC of 6543.135 and that of 
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joint model had an AIC of 6443.14. Also separate longitudinal model had a BIC of 

6604.812 as compared to 6503.82, which was BIC for the joint model. This suggests 

that joint model had a better fit than separate model. 

 

4.6 Assessment of Model Assumptions 

The Cox proportional hazards model assumes that  𝛽 𝑡 = 𝛽 . The hypothesis 𝐻𝑜𝛽 𝑡 =

𝛽  can be tested using the scaled Schonfeld residuals by an approximate score test 

(Grambsch and Therneau 1994). The Schonfeld’s global test was used to test proportion 

hazard assumptions. The “rho” estimates the correlation coefficient between survival 

time and the scaled Schoenfeld residuals. The high p-value of more than 0.05 of the 

score test implies no evidence against the assumption of proportional hazards. A p-

value of less than 0.05 of the test statistic (i.e., the model chi square, sometime 

referred to as Wald chi-square in some packages) indicates a good model fit. Under 

such a condition, the analyst concludes that the current model can reject the null 

hypothesis that all the regression coefficients equal zero, and equivalently, at least one 

coefficient that is not equal to zero. This means that there is no evidence against the 

assumption of proportional hazard, p value = 0.360, Refer Table 7. Hence, the model 

is acceptable.  

Table  7 : Schoenfeld's Global Test Results 

Variable rho Chi square P value 

Food type 0.026 0.259 0.6174 

Body mass index -0.091 2.857 0.0909 

Sex  -0.115 3.738 0.0532 

Age 0.010 0.025 0.8752 

CD4 lymphocyte count -0.040 0.527 0.4678 

Hemoglobin level -0.006 0.015 0.9041 

Tuberculosis 0.030 0.266 0.6060 

Cotrimoxazole -0.033 0.327 0.5676 

GLOBAL NA 8.802 0.3593 
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Graphs for all the explanatory variables against survival time were fitted. All the 

graphs show that the fitted lines (slopes) for the scaled Schoenfeld residuals for all 

covariates are not significantly different from zero, See Figure 5. There the 

assumptions of proportional hazards have been met. This is in line with results 

obtained from the Schoenfeld global test. 

 
 

 

Figure   5: Presents Graphs for scaled Schoenfied Residuals 
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Figure 6 show homogeneity plots of residuals and Q-Q plots of residuals and of 

random effects for the mixed effects random model. The plots of residuals show that 

the assumptions of homogeneity and normality of the residuals have been met in the 

mixed random effects model.  

 

 

Figure   6: Homogeneity Plots of Residuals and of Random Effects for Mixed 

Effects Random Model 

The Q-Q plot for longitudinal process of the joint model shows that the assumptions 

of normality of the random effects have been satisfied, See Figure 6.  
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CHAPTER 5 DISCUSSION 

 

Two groups of HIV positive patient who were receiving different food supplements 

(CSB and RUTF) were compared using joint modeling approach and separate models. 

It has been that shown the repeated measurement variable, body mass index is 

significantly associated with time to an event, that is, survival of the patient. It has 

also been shown that separate and joint models give different results. It is likely that 

the results of joint modeling are more valid than single models, and that joint model 

gives smaller standard errors of the estimates (Henderson et al., 2000; Ibrahim, 2010; 

Nguti et al., 2005). 

 

Corn Soya Blend and Fortified food did not have effect on the survival of the 

malnourished HIV positive patients. Men who are HIV positive and malnourished are 

at risk of dying as compared to women who are also HIV positive and malnourished. 

Body mass index of HIV positive patients who are malnourished has significant effect 

on the survival of patients. The lower the body mass index the higher the risk of 

death.  Use of cotrimoxazole had an effect on the survival of patients. Patients who 

were not using cotrimoxazole had a higher risk of dying than patients who were using 

cotrimoxazole.  

 

Comparison of Cox proportional time dependent covariate and the join models reveals 

some interesting features. In particular, body mass index, sex of person, hemoglobin 

level, and use of cotrimoxazole have effect on the survival of patient both in Cox 

proportional time dependent covariate and the joint models. Age of patient had 
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significant effect on the survival of the person in the Cox proportional time dependent 

covariate only and in joint model it was not significant. It has to be noted that joint 

models are known to produce unbiased estimated (Nguti et al., 2005),  however in the 

joint model age was not significant on the survival of a person. Another difference 

noted, was that most of variables in the joint model had smaller standard errors of the 

estimates. This is an advantage of joint models over independent models (McCrink et 

al., 2011).  

 

Comparison of longitudinal process and joint model reveals that some variables which 

were significant in the separate longitudinal model were not significant in joint model; 

and some variables which were not significant in the separate longitudinal model 

became significant in joint model. It was observed that variables like CD4 count and 

TB status did not significantly affect body mass index (BMI) in the separate model. 

However in joint model CD4 count and TB status had significant effect on body mass 

index. In the longitudinal sub model, variables like age and hemoglobin level had 

significant effect on the body mass index of patients in both separate and joint model. 

Also intercept and time were significant both in separate and joint models.  Type of 

food supplement, sex of person did not have significant effect on the body mass index 

(BMI) in both separate and joint models. 

 

In terms of standard errors, most of variables in the joint model had smaller standard 

errors as compared to the same variables in separate models. For instance, type of 

food supplement, CD4 count, sex, TB status, and use of cotrimoxazole had smaller 

standard errors in joint model than in separate models.  This is in agreement with what 

other researchers found. For instance, Henderson et al. (2000) reported that joint 
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models produce smaller standard errors than separate models. Also in their study 

Nguti et al. (2005) reported that standard errors produced by joint models were 

smaller than standard errors in separate models. Nguti et al. (2005) further argued that 

the smaller the standard errors the better the results. Most of variable in joint models 

in the longitudinal sub model had shorter range of confidence intervals. Narrow 

confidence intervals are more desirable that wider confidence intervals.   
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CHAPTER 6 CONCLUSIONS 

 

This chapter summarizes the study, gives some recommendations for analyzing 

survival data which has repeated measurements variables, and the limitations of the 

study. 

 

6.1 Conclusion 

Type of food supplement (CSB and RUTF) did not have effect on the survival of 

patients. The relationship between body mass index and survival of person living with 

HIV has been established. Body mass index has been shown to have significant effect 

on the time to death of malnourished patients. When time to an event and the repeated 

measurement variable are associated, separate models may produce biased results as 

compared to joint models. Joint models, on average may produce smaller standard 

errors. This research has shown joint models give better results than separate models, 

when there is association between the repeated measurement and time to an event 

variable.  

 

6.2 Recommendations 

When one has survival data with repeated measurement variable, and time to event is 

associated with repeated measurement variable, it is recommended that joint modeling 

of longitudinal and time to event data should be used. 

 

Patients who are HIV positive and malnourished should be given food supplements in 

order to improve their body mass index. Patients who are HIV positive and 
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malnourished must be given treatment that increases levels of hemoglobin if they 

have low hemoglobin levels. Patients who are receiving ART and are malnourished 

must be given cotrimoxazole in order to reduce the risk of death. 

 

6.3 Limitations of Study 

The study used joint modeling of longitudinal and time to the event data. Longitudinal 

sub model used linear mixed effect regression model and the survival sub model used 

Cox proportional hazard model. The study used joint models with correlated error 

structures. The study did not use flexible models that use semi parametric or non 

parametric approach.  
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APPENDICES 

Appendix A: Commands used for data analysis in R 

 
# Data input  

> library(statmod) 

> library(foreign) 

> library(joineR) 

> data <- read.dta("C:\\Users\\User\\Desktop\\Data\\DataLong.dta") 

> names(data) 

  

> data.long <- data[, c(1,2,16)] 

> data.surv <- UniqueVariables(data, var.col = c("time_to_effect", 

"status_death"), id.col = "sfhiv") 

> data.baseline <- UniqueVariables(data, var.col = 

c(3,4,7,8,10,11,12), id.col = "sfhiv") 

> data.jd <- jointdata(longitudinal = data.long, survival = 

data.surv, baseline = data.baseline, id.col = "sfhiv", time.col = 

"time") 

> summary(data.jd) 

> plot(data.jd) 

> take <- data.jd$survival$sfhiv[data.jd$survival$status_death == 0] 

> data.jd.cens <- subset(data.jd, take) 

> take1 <- data.jd$survival$sfhiv[data.jd$survival$status_death == 1] 

> data.jd.uncens <- subset(data.jd, take1) 

> par(mfrow=c(1,2)) 

> plot(data.jd.cens, Y.col ="bmi", main = "BMI: censored") 

> plot(data.jd.uncens, Y.col ="bmi", main = "BMI: Failed") 

> jointplot(data.jd, Y.col = "bmi", Cens.col = "status_death", lag = 

8,col1 = "black", col2 = "gray", ylab = "BMI") 

> jointplot(data.jd, Y.col = "bmi", Cens.col = "status_death", lag = 

3,col1 = "black", col2 = "gray", ylab = "BMI") 

> jointplot(data.jd, Y.col = "bmi", Cens.col = "status_death", lag = 

2,col1 = "black", col2 = "gray", ylab = "BMI") 

> jointplot(data.jd, Y.col = "bmi", Cens.col = "status_death", lag = 

3,col1 = "black", col2 = "gray", ylab = "BMI") 

 

> model.jointrandom <- joint(data.jd, bmi ~1+time+ foodtype + sex1 + 

age + cd40 + contro + hb0 +TB, Surv(time_to_effect, status_death) ~ 

foodtype + sex1 + age + cd40 + contro + hb0 +TB, model = "int") 

> summary(model.jointrandom) 

 

  

> names(model.jointrandom) 

  

> summary(model.jointrandom,variance = FALSE) 

> model.jointrandom.se <- jointSE(model.jointrandom, n.boot = 100) 

> model.jointrandom.se 

 

# Fitting LME  

 

> fit1=lme(bmi ~ time + foodtype + sex1 +cd40+ TB+ contro+hb0+age, 

random = ~1|sfhiv ,data = data, na.action =na.omit) 

> summary(fit1) 
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> fit2=lme(bmi ~ time + foodtype+ sex1 +cd40 + TB+ contro+hb0+age, 

random = ~time|sfhiv ,data = data,na.action=na.omit) 

> summary(fit2) 

 

> fit3=lme(bmi ~ time + foodtype + sex1 +cd40 + TB+ contro+hb0+age, 

random = ~(time+I(time^2))|sfhiv ,data = data, na.action=na.omit) 

> summary(fit3) 

 

# comparing models 

 

> anova(fit1, fit2) 

> anova(fit1, fit3) 

> anova(fit2, fit3) 

> anova(fit2, fit1) 

> qqnorm(fit1, ~ranef(.)) 

> qqnorm(fit2, ~ranef(.)) 

> qqnorm(fit3, ~ranef(.)) 

 

# Plotting Kaplan Meier Graph 

 

> fit4=survfit(Surv(time_to_effect,status_death)~foodtype, 

type="kaplan-meier", data=c(data.jd$survival,data.jd$baseline)) 

>plot(fit4,lty=c(1,2),mark.time=TRUE,col=c("red","blue"),xlab="years"

, ylab="Survival") 

>plot(fit4,lty=c(1,2),mark.time=FALSE,col=c("red","blue"),xlab="years

", ylab="Survival") 

> legend(6,0.2,c("CSB", "RULTF"),lty=c(1,2),col=c("red","blue")) 

 

# Kaplan Meier graph 

> survdiff(Surv(time_to_effect,status_death) ~foodtype 

,data=c(data.jd$survival,data.jd$baseline)) 

> survdiff(Surv(time_to_effect,status_death) ~sex1 

,data=c(data.jd$survival,data.jd$baseline)) 

> survdiff(Surv(time_to_effect,status_death) ~contro 

,data=c(data.jd$survival,data.jd$baseline)) 

 

# Fitting Cox proportion hazard model 

 

> fit5=coxph(Surv(time_to_effect,status_death)~foodtype, 

data=c(data.jd$survival,data.jd$baseline)) 

> summary(fit5) 

Call: 

 

> fit5=coxph(Surv(time_to_effect,status_death)~foodtype + sex1 +age 

+contro+ cd40 +hb0, data=c(data.jd$survival,data.jd$baseline)) 

> summary(fit5) 

 

> cox.zph(fit5, transform="identity") 

                   

> ran=random.effects(fit2) 

> U=ran[,1]+ran[,2] 

> fit7=coxph(Surv(time_to_effect,status_death)~foodtype+U, 

data=c(data.jd$survival,data.jd$baseline)) 

> summary(fit7) 

 

> fit10 <- joint(data.jd, bmi ~1+time+ foodtype + sex1 + age + cd40 + 

contro + hb0 +TB, Surv(time_to_effect, status_death) ~ foodtype + 

sex1 + age + cd40 + contro + hb0 +TB, model = "intslope") 

> summary(fit10) 

> fit10.se<- jointSE(fit10,n.boot=100) 

>  fit10.se 
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# Putting in a format for Cox model for Time dependent covariates 

 

> datacox <- read.dta("C:\\Users\\User\\Desktop\\Data\\datacox.dta") 

> sum(!is.na(datacox[,25:29])) 

[1] 2022 

> datacox.2 <- matrix(0, 2022, 28) # to hold new data set 

> colnames(datacox.2) <-c('start', 'stop', 'event.time', 

names(datacox)[1:24], 'bmi') 

 

> row <-0 # set record counter to 0 

> for (i in 1:nrow(datacox)) { # loop over individuals 

+ for (j in 25:29) { # loop over 14 weeks 

+ if (is.na(datacox[i, j])) next # skip missing data 

+ else { 

+ row <- row + 1 # increment row counter 

+ start <- j - 25 # start time (previous week) 

+ stop <- start + 1 # stop time (current week) 

+ event.time <- if (stop == datacox[i, 1] && datacox[i, 2] ==1) 1 

else 0 

+ # construct record: 

+ datacox.2[row,] <- c(start, stop, event.time, unlist(datacox[i, 

c(1:24, j)])) 

+ }}} 

> datacox.2 <- as.data.frame(datacox.2) 

> remove(i, j, row, start, stop, event.time) # clean up 

 

# Fitting Cox model with Time dependent covariates 

 

> mod.cox.4 <-coxph(Surv(start, stop, status) ~ foodtype + bmi +sex1+ 

age + cd40 + hb0 + TB + contro,data=datacox) 

> summary(mod.cox.4) 

 

# Model Building: Linear Mixed Effects Regression model  

 

# Data input 

> model.mixed <-

read.dta("C:\\Users\\User\\Desktop\\Data\\DataLong.dta") 

> library(lattice) 

> library(nlme) 

> attach(model.mixed) 

 

#Distribution for body mass index 

 

> hist(bmi , col =" darkgray ") 

> xyplot(bmi ~time ,data , type ="l", xlim =c(1 ,3) , main ="A 

Trajectory plot of Body Mass Index ") 

> xyplot ( bmi ~ time |sfhiv ,model.mixed, type ="l", subset =(sfhiv 

< 31) ,strip =FALSE , main =" Individual plots (for the first 30 

Patients )") 

> mod.mixed.1 <-lme( bmi~ foodtype + sex1 + time + cd40 + hb0+ TB + 

contro, random = ~ time |sfhiv , data = model.mixed , 

na.action=na.omit) 

> summary(mod.mixed.1) 

> intervals(mod.mixed.1) 

  

#Testing normality of random effects 

 

> par(mfrow =c(1 ,2)) 
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> fitted.values <- fitted(mod.mixed.1) 

> standardized.residuals <-residuals(mod.mixed.1) 

> plot(fitted.values , standardized.residuals , main ="Homogeneity 

plot of Residuals") 

> abline(h=c(-1.96* sd(standardized.residuals),0,1.96* 

sd(standardized.residuals))) 

> qqnorm(standardized.residuals , main ="Q-Q Plot of Residuals") 

> abline(0, sd(standardized.residuals)) 

> eblups <-as.vector(unlist(ranef(mod.mixed.1))) 

> qqnorm(eblups , main ="Q-Q Plot of Random Effects ") 

> abline(0, sd(eblups)) 

 

 

 


