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ABSTRACT
Sometimes clinical trials collect survival data, which have some variables measured
longitudinally. This type of data is mostly analyzed using Cox proportional models
with time dependent covariates. The longitudinal variables are treated as time
dependent covariates. When there is association between a longitudinal variable and
the time to event, estimates produced from separate models may be biased. The study
uses Cox proportional models with time dependent covariates for survival data and
linear mixed effects regression models for the longitudinal data. For the joint analysis,
the joint modeling between repeated measurement and time to an event is used. The
method is applied to data from a randomized clinical trial for the malnourished HIV
positive patients who were on ART at Queen Elizabeth Central Hospital. One group
received corn soya blend (CSB) and other group received ready to use therapeutic
food (RUTF). Results from joint modeling showed that there is significant association
between body mass index (BMI) and time to death of a patient, p < 0.001. Both joint
model and Cox proportional model with time dependent covariates showed that the
type of food did not have significant effect on the time to death of patients.
Hemoglobin levels, sex of patient and use cotrimoxazole were significantly associated
with time to death of malnourished HIV positive patients. It was also observed that
some variables which were not significant in the separate models became significant
in the joint model. This shows the importance of using joint models. Joint modeling of

longitudinal and survival data gives unbiased estimates.
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CHAPTER 1 INTRODUCTION

This chapter introduces and states the problem being researched and explains why this

topic was chosen and how data was collected.

1.1 Background

Clinical trials sometimes collect survival data. Survival data is defined as data, which
its response of interest is time until some event occurs (Kalbfleisch & Prentince,
2002). Survival analysis is a statistical method used to analyze data when the outcome
of interest is time to occurrence of an event. Survival analysis is also called time to
event analysis. In medical field, time to event can be time until recurrence of tumor in
a cancer study, time to death after surgery, or time until infection (Kalbfleisch &

Prentince, 2002; Collet, 2003).

Standard statistical techniques cannot usually be applied to analyze survival data
because the underlying distribution is rarely normal and the data is often censored
(Bewick et al., 2004). A variable is said to be censored when there is a follow up time
but the event has not yet occurred or is not known to have occurred (Bewick et al.,

2004; Kalbfleisch & Prentince, 2002).

In clinical trials, longitudinal data are collected. Repeated measurement variables,
which are variables collected repeatedly over a long period of time are analyzed using

longitudinal data methods. There are several methods, which are used to analyze



longitudinal data. Some of them are univariate analysis of variance (ANOVA),
multivariate analysis of variance (MANOVA), mixed effects regression models
(MRM), covariance pattern models (CPM) and generalized estimating equations

(GEE).

Several methods also exist for analyzing survival data. Among them are non
parametric, semi parametric and parametric methods. Many textbooks have been
written in order to address survival data analysis. These books include: Kalbfleisch and
Prentince (2002), Collet (2003) and Machin, Cheung and Parmar (2006).

Kaplan and Meier (1958) proposed a non parametric method that is widely used as a
starting point in the field of survival data analysis. Non-parametric methods are

suited for the homogeneous samples.

Another method used to analyze survival is Cox proportional hazard model. The Cox
proportional hazards model, which was proposed by Cox (1972), is now the most
widely used approach for the analysis of survival data (Hosmer & Lemeshow, 1999).
Despite the Cox proportional hazard model being the most widely used, in some
situations, it may not be the appropriate method to use especially when proportion
hazards (PH) assumptions do not hold. The extensions of Cox PH models such as
stratified Cox model and Cox model with time dependent variables can be used for

the analysis of survival data when PH assumptions fail to hold.

Survival data with baseline covariates and repeated measurements covariates can be
analyzed using Cox proportional model with time dependent covariates (Collet,

2003). Effects of repeated measurements on the time to an event are assessed by



treating the repeated measurement as a time dependent covariate in a survival model
(Nguti, Burzykowski, Rowlands & Janssen, 2005). The problems associated with this
modeling approach were well described by Tsiatis, Degruttola and Wulfsohn (1995).
If there is association between the repeated measurements data and time to an event,
for example time to death, Cox model with time dependent models may not be
appropriate approach of modeling this type of data (Nguti et al., 2005; McCrink,
Marshall & Cairns, 2011). Time dependent covariates Cox models produce biased
estimates when there is association between time to an event and repeated
measurement variables (Nguti et al., 2005). In that case, joint modeling of survival
and repeated measurement data becomes a better approach to use. Joint modeling of
survival and longitudinal data may be used to analyze data, when both repeated
measurements and time to an event are collected and these variables are associated.
These two processes, namely repeated measurements and time to event, are associated
through unobserved random effects (Tsiatis et al., 1995; McCrink et al., 2011). When
there is an association between repeated measurements and time to an event, joint
modeling gives better results (Henderson et al., 2000; Ibrahim, Chu & Chen, 2010). In
fact Ibrahim et al. (2010) has demonstrated that joint modeling can improve the
accuracy of the estimation for parameters in both models when the longitudinal
measurements and survival times are highly correlated. In particular, Little and Rubin
(2002) reported that joint modeling produces smaller standard error of estimates.
With accurate estimates of parameters, the right conclusion on the effect of repeated
measurement covariates on the survival of the individual can be made (McCrink et al.,
2011). Nguti et al., (2005) reported that estimates from separate analysis (i.e. survival

model and longitudinal data model) have been shown to be biased towards zero, thus



showing over estimated hazard ratios, and this bias can be reduced by using joint

models.

Diggle, Sousa and Chetwynd (2008) reported several advantages of joint modeling of
the repeated measurement and the time-to-event processes. They reported that the
repeated measurements can be extrapolated from observed measurement times to the
specific event time in a way that utilizes the entire measurement history. They also
reported that the time to the event is allowed to depend on the true but unknown value
of the repeated measurement, thus making adjustment of measurement error. This in
turn leads to reduced bias of the parameter estimates of the Cox model. Also the
repeated measurement process is adjusted for any loss of information arising from
death or loss of individuals. When there is no association between longitudinal
repeated measurements and event to survival, joint modeling reduces to separate

survival data and longitudinal data methods (McCrink et al., 2011).

This study used secondary data that was collected in 2006. In the study, malnourished
adults HIV positive patients were given one of the two food supplements (CSB or
RUTF). Time to death of malnourished HIV positive patient receiving ART was the
event of interest. However, weights of patients were also collected longitudinally. It is
likely that body mass index (BMI) was associated to time of death of a malnourished

HIV positive person.

Zechariah et al. (2006) reported in their paper entitled “Risk factors for high early
mortality in patients on ART in rural district of Malawi” that many HIV infected

patients in Malawi died within the first 3 months after the initiation of antiretroviral



therapy (ART). The aim of the study was to find factors associated with time to death
of malnourished HIV positive patients receiving ART, but also to assess factors
associated with the longitudinally collected body mass index (BMI). In adults, BMI is

a measure used to indicate whether a person was underweight or not.

The data for this study was collected from the randomized clinical trial. In the clinical
trial, data was collected from malnourished HIV positive at Queen Elizabeth Central
Hospital in Blantyre, Malawi. Nutritional support in terms of food supplements were
given to the patients. Nutritional support was identified as one of the most immediate
and critical needs for patients living with HIV/AIDS (Manary et al., 2010; Ndekha et

al., 2009).

1.2 Statement of the Problem

Wasting is a major problem in sub Saharan African among adults with advanced HIV
infection and the prevalence of wasting ranges from 20% to 40% (Dannhauser et al.,
1999; Van der Sande et al., 2004). Wasting is normally the result of inadequate
nutrient intake because of anorexia, food insecurity associated with poverty, catabolic
state induced by opportunistic infection or malignancy, or poor absorption of nutrients
secondary to diarrhoea and malabsorption (Ndekha et al., 2009). Wasting is one of the
risk factors of death among adults with advanced HIV infection in Sub Sahara. In
Malawi, supplementary feeding together with treatment is advocated as the standard

care of wasted adults with HIV in Malawi (Ndekha et al., 2009).

Corn soya blends (CSB) and ready to use fortified spreads (RUTF) are some of the

supplementary foods given to HIV patients who are malnourished and receiving



antiretroviral therapy. Studies have shown than RUTF resulted in greater increase in
BMI as compared to CSB (Manary et al., 2010; Ndekha et al., 2009). However it is
not clear if RUTF and CSB have effect on the time to death of malnourished HIV
infected patients who are on ART. Zachariah et al. (2006) reported that in Malawi
mortality during the first 3 months of antiretroviral therapy is high, and a low BMI is

associated with this early mortality. There is a need to assess the effects of CSB and

RUTF on the time to death of malnourished HIV infected patients who are on ART.

When the aim of the study is to assess the effects of the repeated measurements on
time to death of patient, Cox models with time dependent covariates are used (Sousa,
2011; Nguti et al., 2005). The effect of repeated measurements on the time to death
has been assessed by treating the repeated measurement as a time dependent covariate
in a survival model (Nguti et al., 2005). The effects of other covariates on the
outcome variable such as body mass index have been analyzed using mixed effect
regression model. The survival component and the longitudinal data components have
been analyzed separately. It is therefore necessary to analyze survival data and
longitudinal data simultaneously using joint models because there is association
between lower body mass index and time to death of a patient (Manary et al., 2010;

Zechariah et al., 2006). Joint modeling takes care of this association.

1.3 General Objective

The purpose of this study is to compare the results from joint and separate models for
the repeated measurements and time to death for the malnourished HIV positive
patients who are receiving antiretroviral therapy (ART) at Queen Elizabeth Central

Hospital in Malawi.



1.3.1 Specific Objectives

e To model the effects of CSB and RUTF on the time to death of
malnourished HIV infected patients who are on ART.

e To assess the relationship between body mass index (BMI) and time to
death in malnourished HIV positive patients.

e To model jointly the body mass index and time to death for the
malnourished HIV infected patients who are on ART.

e To model separately the repeated measurements and time to an event data.

e To compare the estimates from models produced by separate methods and

joint modelling methods.

1.4 Significance of Study

Analysis of survival and longitudinal data poses a challenge when there is an
association between time to an event variable and the repeated measurement variable.
Using time dependent Cox model to analyze survival data with longitudinal variable
may give biased results especially when there is association between the time to an
event of interest and longitudinal variable. The statistical approach (joint modeling)
used in this paper reduces bias and produces smaller standard errors (Henderson et al.,

2000).

This paper will help to add knowledge in the field of nutrition especially among
malnourished HIV positive patients. Few studies in the field of nutrition have used
joint modeling of survival and longitudinal data approach. Therefore, this paper
intends to add to the available work in the modeling of survival data when there is

association between the survival event and repeated measurement data.



1.5 Structure of the thesis

This thesis is structured as follows: Chapter 2 reviewed literature on methods used to
analyze survival data, longitudinal data and joint modeling. The methodology for this
thesis is presented in chapter 3. Results for survival model, longitudinal model and
joint modeling are presented in chapter 4. Discussion of results is presented in

Chapter 5. Finally chapter 6 gives conclusions and recommendations.



CHAPTER 2 LITERATURE REVIEW

This chapter gives the literature review of survival analysis, longitudinal data analysis

and joint modeling

2.1 Longitudinal Data Model

The longitudinal data are measurements collected repeatedly over a period of time
from the same individual. The purpose of a longitudinal study is to show the effect or
change of outcome variable over time and the factors which influence the change. In
the subsequent sections, the common approaches for handling longitudinal data are
reviewed. These include repeated measures ANOVA, MANOVA, mixed effects
regression models and generalized estimating equations. This section uses information
from the following books: Hedeker and Gibbons (2006), Faraway (2006) and Diggle,

Heagerty, Liang and Zeger (2002).

2.1.1 Repeated Measure Analysis of Variance (ANOVA)
Repeated measure of analysis of variance (ANOVA) is the approach used to provide
analysis of complete data. It works by regarding time as a factor on n levels in a
hierarchical design with units as sub plots (Diggle et al., 2002). Diggle et al. (2002)
described repeated measure ANOVA in the following way:
Consider the following model

Yhij = Br + ¥nj + Uni + Zpy 211

where yy;; denotes jth observation from the ith unit within the hth treatment group;



j=12,..,n; i=12,....,my; h=1.2,...,9. The term S} represents main effects
for treatments and yy; is an interaction between treatments and time with constraints
that Y7, y»; = 0, for all h. In equation 2.1.1, Uy,; and Zj,;; are mutually independent
random effects for units and measurement error respectively, E(Yy;;) = B + ¥, -

Assuming that both Uy,; and Z,; are normally distributed with zero mean and
variance v? and o? respectively, then Yy; = Y1, ..., Yuin IS multivariate normal,

which has V = v2I + 2] as its covariance matrix, where | is identity matrix and J is

2

a matrix all of whose elements are 1. The model has constant correlation p = T

between any two observations on the same unit.

ANOVA requires that the data must be balanced. In addition to this, ANOVA makes
an assumption of sphericity. Rabe-Hesketh and Skrondal (2008) defined sphericity as
the assumption that all pair-wise differences between responses have the same
variance. The assumption of sphericity is rarely met when analyzing longitudinal data.
Because of this ANOVA is limited in its application. When the assumption of
sphericity is violated, it can lead to skewed F-distributions. The advantage of
ANOVA is that it takes into account the fact that subjects can have individual baseline
observations but no subject-specific evolution in time. When they are missing data,
ANOVA uses observations which have complete data only (Hedeker & Gibbons,

2006).

2.1.2 Multivariate Analysis of Variance (MANOVA)
Multivariate analysis of variance (MANOVA) is another approach used to analyze
longitudinal datasets and has similar restrictions as the univariate ANOVA described

above. This method treats the n repeated measurements as n x1 response variable. The

10



usual approach involves transforming observations into orthogonal polynomial
coefficients. For one sample MANOVA, lety, =u+¢;, y; is ann x1 response
vector for the n repeated measurements, uis ann x1 mean vector for time points,
g; isann x1 vector of errors and €,~N(0,Z), y; is normally distributed with mean
p and variance 2. Under univaraite approach £ = 0621,1', + o2l, andu = ul + .

MANOVA does not handle missing values in data and in addition it assumes the
variables to be measured at the same occasions. It is therefore not suitable for

longitudinal datasets with non-responses (Hedeker & Gibbons, 2006).

2.1.3 Mixed Effects Regression Model (MRM)

Another approach used to analyze longitudinal data is the mixed regression models
(MRM). This approach can be used for both categorical, continuous and count data.
MRM gives unbiased results if missing data are assumed ignorable i.e. missing
completely at random and missing at random. MRM allows the measurement
occasions to vary among the individuals. The method handles both time invariant and
time varying variables and is therefore a suitable method to analyze longitudinal data
with non responses. When dependent or outcome variable is continuous and normally
distributed, the MRM s referred as the linear mixed effects regression model. The
linear mixed effects regression model approach is an extension to a class of regression
models called generalized linear mixed effects regression models that is often useful
for outcomes such as binary, count and ordinal data. The disadvantage of MRM is that
the full-likelihood methods are more computationally complex than quasi-likelihood

methods (Davis, 2002; Nakai & Ke, 2011).

11



2.1.3.1 Linear Mixed Effects Regression Model

Repeated measurements continuous outcome can be modeled using a linear mixed
effects regression model (Hedeker & Gibbons, 2006; Molenberghs & Verbeke, 2005).
The procedure is detailed below using the notations of Molenberghs and Verbeke

(2005) and Hedeker and Gibbons (2006).

For any repeated measurement variable, for example body mass index (BMI), which
is continuous variable. Let Y;; represent the jth measurement of repeated measurement
variable for example body mass index for the ith subject collected at time w;; for
i=12,..,nandj = 1,2,...,p; . Total number of subject interviewed is n, and p; is
number of body mass index measurements collected from subject i .
Consider Y = (Yi1,Yi2, ..., Y;,), in which Y;; is the first measurement for subject i.
It follows that Y, = Xy;6y + Qi1 + &; 2.1.2
The term X;; is a p x s design matrix, Q; is ap x t design matrix and Sy isansx 1
vector containing fixed effects. Random effects were depicted by r; , whichisat x 1.
The term r; follows a normal distribution, N(0,G) and r; has a mean of zero and its
variance covariance matrix G = [vbc]. In this case vbc = Cov(ry, 1), €; IS a residual
error vector. An assumption that r; is independent of ¢; can be made. The residual
errors have normal distribution with mean zero and its variance covariance isV; .
Nguti et al (2005) argues that Y; is marginally normally distributed with X;; 8, and its
variance covariance is
Fi = QGQ +V, 2.1.3

The linear mixed effect regression model has random and fixed effects. In equation
2.1.2, fixed effects were represented by X;;6y and random effects by Q;r; .
Variability within subjects is taken care by the term f,, . Variability between subjects

12



is modeled using random effects r;. Linear mixed regression model can have either

random intercept only, random intercept and slope or quadratic.

2.1.4 Generalized linear models

Generalized linear models (GLM) are applied when analyzing univariate discrete
outcome variables, via known variances and link functions. Generalized linear models
have three components. These are random component, systematic component, and
link between the random and systematic components (Davis, 2002). The random
component identifies the response variable y and assumes a specific probability
distribution for y and the probability distribution belongs to exponential family

(Davis, 2002).

For longitudinal data, the GLM is not sufficient to model discrete responses because
of the dependency between observations within subjects. There are 3 main extensions
of generalized linear models. These include marginal models, mixed effects models
and transitional models. This section describes the extensions of GLM as discussed by

Davis (2002).

2.1.4.1 Marginal Models

Let y; stands for the response at time j from subject i. Marginal expectation
nij = E(y; ) is modeled as a function of explanatory variables. The marginal

expectation is the average response over the sub population that shares a common
value of the covariate vector. Note that, this is what is modeled in a cross sectional

study. Associations among repeated observations are modeled separately from the
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marginal mean and variance of the response vector. The assumptions can be outlined
as follows:

1. The marginal expectation y;; is related to the covariates through a known link
function g:

g(u;) = x';; B; , where x';; = x;;4, ..., X;5,, is a vector of covariates specific to
subject i attime jand g isap X 1 vector of regression parameters.

2. The marginal variance of y; is related to the marginal expectation pu;;
through Var(y; = @V (w;), where V is a known variance function and @ is a
possibly unknown scale parameter.

3. The covariance between y;; and y'; is a known function of u;;, u';;, and a

vector of unknown parameters a.

2.1.4.2 Random Effects Models

In random effects models, heterogeneity between individuals arising from
unmeasured variables is accounted for by including subject specific random effects in
the model. These random effects are assumed to account for all of the within subject
correlation present in the data. Conditional on the values of the random effects, the
responses are assumed to be independent.

The assumptions can be outlined as follows:

1. Given a vector bi of subject-specific effects for the ith subject, the conditional
mean of y; satisfies the model g(E[y;; |b;]) = x';; B + 2’ b;, where g is a
known link function and z;; is a vector of covariates for subject i at time j.

2. Yi1, -, Vi are independent given b; foreachi = 1,...,n.

3. by, ..., b, are independent and identically distributed with probability density

function f.
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2.1.4.3 Transition Models
In transition models for the analysis of repeated measurements, the observations
Yi1, - Yiei from subject i are correlated because y;; is explicitly influenced by the
past values y;q,...,y;j—1. The past outcomes are treated as additional predictor
variables. The conditional expectation of the current response, given the past
responses, is assumed to follow a generalized linear model. The linear predictor
component of the model includes the original covariates as well as additional
covariates that are known functions of past responses.
Thus, the general form of the model is

9Ei |y o yij-1]) = X4 B+ B arfy Gins s Vij—1; @1, s @) 2.1.4
Wheref, ..., f; are functions of previous observations and possibly of an unknown
parameter vector « = (ay, ..., &). In addition, the conditional variance of y;; given
the past is proportional to a known function of the conditional mean i.e.
Var(yi|yi, - ¥ij-1) = OV(E[yi;|yi1, -, ¥ij-1]), where V is a known variance

function and @ is an unknown scale parameter (Diggle et al., 2002).

2.1.4.5 Generalized Estimating Equations (GEE)

Generalized estimation equations (GEE) were proposed by Liang and Zeger (1986)
based on concept of estimating equations. Generalized estimating equations (GEE)
are generalization of generalized linear models (GLM). GEE support many different
types of dependent variables. The method was developed to cater for categorical and
counts responses, and can also be used to analyze continuous data (Diggle et al.,

2002; Hedeker & Gibbon, 2006).
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Let Y; = (Y;1,Y2, ..., Y;,) be a vector of correlated responses for ith subject,
i=1,2,..,n

Marginal expectation of response, E(Yij) = u;;, and this depends on explanatory
variable X;; through a known link function, g(u;;) = n; = X;; f. Marginal variance
of Y;; depends on marginal mean according to var(Yl-j) = v(w;)$, where v(u;;) is
known and ¢ may have to be estimated. Correlation between Y;; and Yy, is function of
some additional parameter a, may also depend on y;; and g,

Estimate of B can be obtained as solution to the following generalized estimating

d)

equations Y ; Dl-'Vl-‘l(Yl- —u;) =0, where D; = T and V; is working covariance

matrix, that isV; = Cov(Y;), D; is a function of 8, V; is a function of both g and «a.
Iterative two stage estimation procedure is required for generalized estimation
equation.
1. Given current estimates of @ and ¢, an estimate of 3 is obtained as solution to
the GEE.
2. Given current estimate of , estimate of S and ¢ are obtained based on

1
standardized residuals r;; = (¥;; — fi; )vid; 2 2.15

If estimates of a and ¢ are consistent, then the solution of generalized estimating
equations S has following properties:
1. P is consistent estimator of 3.

2. Inlarge samples £ has a multivariate normal distribution.

3. Cov(B) =F1GF! , where F=YL,D;Vi'D, :
G = X7y DV eov(Y)V ' D;
Marginal distribution of Y;; at each time point has to be specified. The GEE treated

variance-covariance structure as a nuisance. In the GEE, unobserved variables are
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dependent only on the covariates, as the result of this, the missing data structure for
GEE is the covariate-dependent MCAR. Therefore GEE does not automatically
provide unbiased estimates of parameters when data is missing at random (MAR).
Some weighting will need to be done to obtain unbiased estimates (Lipsitz &
Fitzmaurice, 2009). This is one of the shortfalls of GEE when there are some missing

data.

The term marginal model refers to models for longitudinal data, which have random
effects (Fitzmaurice et al., 2009). Specification of a GEE is similar to a GLM with a
linear predictor, a link function and variance described as a function of the mean. An
additional feature of GEE is the working correlation structure R, n x n correlation
matrix common for all subjects. It is important that choice of working correlation
matrix should be consistent with the observed correlation matrix. However, choice of
the correlation structure for the repeated measurements is not critical for GEE. This is
because GEE provides estimated parameters and standard errors that are robust to
misclassification of the variance covariance structure. The important thing is that the
univariate analysis models at each time point should be specified correctly. GEE
should be applied when the research interest is mainly on estimates and inference of
the regression parameters, but is not suitable when modeling variance-covariance

structures of longitudinal data.

In the frame work of GEE, there are two general approaches used to handle missing

data. The first approach is to analyze multiple imputed data by generalized estimating

equations. The second approach is the use of weighted estimating equations. This
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approach is suitable when the missing data pattern is monotone, as a result of dropout.

See Fitzmaurice et al., (2009) for more detail.

2.1.5 Covariance Patten Model (CPM)

Covariate Pattern model (CPM) can be regarded as an extension of MANOVA. CPM
does not distinguish between subjects and within-subjects variance. CPM was first
described by Jennrich and Schluchter (1986) (Hedeker & Gibbon, 2006). The
regression model for CPM in matrix form can be written as y; = X;[; + e;, with
i =1,2,..N fornindividuals and j = 1,2, ...n; observations for i individuals, y; is an
n; x 1 vector for subject, B is a p x 1 vector of fixed regression parameters, the vector
e; is assumed to be normally distributed with zero mean and variance-covariance X;,
(Hedeker & Gibbon, 2006). CPM assumed that timing of measurements is fixed, this
means that subjects are intended to be measured at the same finite number of
occasions. CPM allows that individuals may have incomplete data.

There are different covariance patterns for covariance pattern model (CPM). These
covariance patterns include independent covariance structure, exchangeable
covariance structure, first order autoregressive structure, Toeplitz structure and

unstructured form.

2.1.6 Missing data Mechanisms

Missing data are common in longitudinal data. One of the reasons is that studies take
long and some of participants may drop or may be lost to follow up before an
endpoint of interest is measured. This section discusses the classification of missing

data and the mechanisms used to handle missing data.
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2.1.6.1 Classification of Missing Data

Rubin (1976) has classified missing data in the following ways: missing
completely at random (MCAR), missing at random (MAR) and missing not at
random (MNAR). Let R;; stand for an indicator variable taking value 1 if an
individual i is observed at time j and 0 when an individual was not observed at
time j. If subjects were supposed to be measured at n time points, thenn x 1
complete dependent vector isY; = (Y;1,Yi2, ... , Y, ). And Y; is an n x 1 matrix of
covariates X;.

The n x 1 missing data indicator vector is R"; = R;1, Rz, ... , Ry, WithR;; = 1 if
Y;; is observed and R;; = 0 if Y;; is missing. Further divide the complete data

variable vector Y into observed Y, and unobserved Y;™.

Rubin (1976) defined the terms as follows: data is said to be missing completely
at random (MCAR) if the missing data occur totally at random. The missing data is
not related to other observed or unobserved data. This is the most basic missing data
mechanism and assumes missing data to occur for completely random reasons. The
distribution of missing values R is thus assumed to be independent of both covariates
and the dependent variable as P(R;|Y?,Y/",X;) = P(R;) (Rubin, 1976). Shaffer

(1997) presented a good summary on missing data mechanism.

The second mechanism of missing data to be discussed is missing at random
(MAR). Data is said to be missing at random (MAR) if probability that responses
or observations are missing depends on the set of observed responses, but is not

related to the specific missing values that would have been obtained if there were no
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missing data. MAR can be written as P(R;|Y?,Y/",X;) = P(R;|Y{, X;)(Rubin, 1976;

Molenberghs & Fitzmaurice, 2009).

Missing completely at random (MCAR) and missing at random (MAR) are referred to
as ignorable mechanisms. In order to obtain valid likelihood based estimates in the
presence of some missing data, the data have to meet the following two conditions.
The first condition is that the missing data should be missing at random (MAR).
Secondly the parameters defining missing data process should not be related to the

parameters to be estimated.

Finally, not missing at random (NMAR) is defined as the probability of missing
responses, which depends on both the set of observed responses and the specific
missing values that should have been obtained if there were no missing data. That is
conditional distribution of R; given Y, is related to Y/* and P(R;|Y,Y/",X;)
depends on at least some components of Y;" (Rubin, 1976; Molenberghs &
Fitzmaurice, 2009). When data are missing not at random (MNAR), they are called

non ignorable missing data.

2.1.7 Handling Missing Data

There are different approaches used to handle missing data. Some of these approaches
include complete case analysis, last value carried forward, imputation methods,
expectation maximization (EM), selection models, and pattern mixture models. This

section discusses some of these approaches.
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2.1.7.1 Complete Case Analysis

In the complete case analysis method, only subjects without missing observations are
included in the analysis. That is, subjects with incomplete observations are discarded
in the analysis of data. Advantage of complete case analysis method is that it can be
used for any kind of statistical analysis, however it gives unbiased estimate of mean
response trends only when the missingness is missing completely at random (MCAR)
(Nakai & Ke, 2011). In the complete case analysis, the amount of data is reduced and
this leads to the reduction statistical power (Diggle et al., 2002). When data is not
completely missing at random, complete case analysis may give biased results.
Carpenter and Kenward (2007) recommended that complete case analysis should not

be used to address the problem of missing data.

2.1.7.2 Last observation carried forward (LOCF)

Last observation carried forward (LOCF) imputes values for missing data based on
the last previous observed value. This method is usually used in the longitudinal data,
in which data are observed or collected at several occasions. It imputes values equal
to the last observed response for the variable for each unit (Diggle et al 2002). The
disadvantage of LOCF method is that it may give biased results when the missing data
IS not missing at random. As the result, Carpenter and Kenward (2007) argued that

this method should not be used when imputing missing data.

2.1.7.3 Expectation maximization (EM)

Expectation maximization (EM) is another method used to produce estimates of

coefficients during data analysis. This method is based on Bayesian thinking. EM was
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introduced by Dempster et al. (1977). EM uses maximum likelihood estimation (ML)

to produce parameter estimates.

Likelihood methods handle problem of missing data by modeling and estimating
parameters of joint distribution of Y;, f (Y;|X;,v) (Molenberghs &Fitzmaurice, 2009).

Maximum likelihood estimator (MLE) can be obtained by maximizing f (¥, |X;,v).

In this method, missing values are predicted by using observed data and the model of

conditioned mean E (Y™ Y, X;,y) (Molenberghs & Fitzmaurice, 2009).

EM works in two iterative stages. First stage is called expectation stage (E-step) and
second stage is known as maximizing stage (M -step). Let 6° be current estimate of
parameter 6, then W (6'16) = [ g(61Y,)f (¥" ,|Y?), (6* = 6)dY/™ , where g(8]Y,) is
complete data log likelihood. M-step gets parameter estimates to maximize complete
log likelihood from E-step. W (6t*1|9%) > W (8¢|6) for all®. E and M steps are
iterated until iteration converges. The method assumes a large number of data so that
the EM estimates can be approximately unbiased and normally distributed. In addition
it assumes data to be ignorable, that is MCAR or MAR mechanism (Molenberghs &

Fitzmaurice 2009).

2.1.7.4 Multiple imputation

Multiple imputation (MI) is another approach used to handle missing data. Multiple
imputation produces M different datasets, in which each could have been the
complete dataset if all values were observed. These M complete datasets are
combined to obtain estimates and standard errors that reflect uncertainty in the

missing data and the finite sample variation (Rubin, 1987). Multiple imputation
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method is Bayesian based. Ml involves 3 different stages; namely missing values are
filled M times to generate M complete datasets; each of the M complete datasets is
analyzed by using standard, compete, procedures; and results from the M analyses are
combined to produce a single M1 estimator and to draw inferences using Rubin’s rule

(Rubin, 1987).

In MI, missing data are substituted by their corresponding imputation samples,
producing M completed data sets. Using the notation of Kenward and Carpenter
(2009), let B, be estimate of # and V;, be covariance matrix from the kth completed

dataset (k = 1,...,M). The Ml estimate of /5 is the simple average of the estimates

A 1 ~

Bur = " ?4:1 Bi 2.1.6
Rubin (1987) provides the following expression for the covariance matrix of 8, that

can be applied very generally and uses only complete-data quantities. Define

W = %Zﬁil I, to be the average within-imputation covariance matrix, and

B = ﬁ M (Br — Bu)(Bx — Bup)' to be the between-imputation covariance matrix

of B,. Then, an estimate of the covariance matrix of g is given by

Vp =W + (%) B 217

Tests and confidence intervals are based on the approximate pivot
P = (Bur — B)Viit (Bur — B) (Rubin, 1987).

Multiple imputation produces unbiased estimates and variance if the data is missing
completely at random (MCAR) or missing at random (MAR) (Little & Rubin, 2002;

Diggle et al., 2002; Hedeker & Gibbon, 2006).
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2.1.8 Missing Data Not At Random

The approaches described above make assumption that the data missing mechanism is
MCAR or MAR, but in some cases the data may be missing not at random (MNAR).
To handle MNAR, the missing data distribution must be taken into consideration
when imputing the unobserved values. When handling data, which is not missing at

random selection and pattern mixture models can be used.

2.1.8.1 Selection models

Selection model is made up of distributions for the complete data and missing data
given the data itself. Therefore the joint distribution of the complete data Y; and the
missing data distribution R; through models for marginal distribution of Y; and the
conditional of R; given Y; can be written as

fR Y X, v, 0) = fy(Xo, V) friy (Ri|Xi, v, @), where 8 = (y, ¢) (Little, 2009).
Selection models are extremely sensitive to the distributional shape that is chosen for

the population (Schafer & Graham, 2002).

2.1.8.2 Pattern Mixture Models

Another approach used to model non ignorable missing data is pattern mixture model.
This model groups the whole sample on basis of the missing data distribution. Pattern
mixture models specify marginal distribution of R; and conditional distribution of Y;
given R; can be written as f(R; Y;|X;,v,8) = fr(R;|X;, 8) fyjg(Yi|Xi, Ri,v)  2.1.8.
In equation 2.1.8, 8 = (v, §). Unlike selection models, pattern mixture models are not

sensitive to distribution of the population (Schafer & Graham, 2002).
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2.2 Statistical Models for Survival Data

2.2.1 Introduction

There are many techniques used to analyze survival data. This section describes some

of the techniques used to analyze survival data.

2.2.1.1 Survival Time Distribution

Using notation similar to that of Kalbfleisch and Prentince (2002), suppose T; denote
survival time of an ith individual (i = 1,2,3, ....n), that is taken as the minimum of
true event time t*. The data that can be observed are {t;, &}, fori =1,2,3,...n
where t; = min(t], c;). Further denote §; = I(t; < c;), where c; is censoring time

for the ith individual. Then T; can be regarded as a random variable.

Let T be a non negative random variable representing the survival time. Survival time
distribution can be described by one of the following three functions; survival
function, hazard function, and probability density function. The definitions presented
in this section are based on a book written by Kalbfleisch and Prentince (2002).

It has to be noted that survival function is defined by both discrete and continuous T.
Both probability density and hazard functions are available for discrete and
continuous T. Survival function S(t) is defined for both discrete and continuous
distributions as the probability that the survival time is greater than t. That is S(t) =

P(T>1),0<t< oo,

25



2.2.1.2 T discrete

If T is a discrete random variable taking ordered values t; < t, < -+, with
associated probability function f(t,) = P(T =¢t;), i = 1,2,3,... then the survival
function is expressed as S(t) = X ¢,>¢ f(t;)

The hazard function h(t) is defined as the conditional probability of failure at time ¢;

given that the individual has survived up to time ¢;.

<+

f()
S(

h(g) =P(T=4|T 24) =

=130 221
S(t))

2.2.1.3 T absolute continuous

If T is absolute continuous variable, then the probability density function of T is
expressed as f(t) = F (t) = =S (t), for t = 0.

Hazard function gives instantaneous failure rate at t given that the subject has

survived up to time t, mathematically; the hazard function is given by

P(t<T<t+At|T>t)
At '

h(t) = limAt_)o 2.2.2

Survival function and hazard function are related and their relationship is given by the

f(&) _ —dlogs (t)

following formula h(t) = o= a

, Where

S(t) = exp[— fot h(w)du] = exp (—H(t))for t > 0.
H(t) = fot h(u)du is called cumulative hazard function that can be obtained from

survival function because of the following relationship H(t) = —logS(t).

Probability density function for T may be written as
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f() = h(t)exp[— [, h(u)du] . 2.2.3
The remaining part of this section reviews some of the methods, which are used to

analyze survival data.

2.2.2 The Kaplan Meier estimate of Survival Function

Kaplan-Meir estimate of survival function (Kaplan & Meier, 1958) is the estimator
used by most statistical software packages (Hosmer & Lemeshow, 1999). The
estimator uses information from all observations, both censored and uncensored, and
considers survival at any point in time as series of steps defined by observed survival

and censored time (Hosmer & Lemeshow, 1999; Collet, 2003).

Suppose that k individuals have experienced an event of interest, such as death in

group of individuals. If we let 0 < t(;) < - < tg) < oo be the observed events of
interest i.e. death, ordered according to times the event of interest has occurred. Let k;
be the number of individuals who are at risk at t(,y. The individuals at risk can be
defined as the individuals who are alive and not censored just before ;.

Furthermore let d; be the number of events of interest (deaths) that have been

observed at t(;,j = 1,2, ..., k. Then Kaplan Meier estimator of S(¢) is defined by

A d;
s(t) = Hj: t()<t 1- é 2.2.4

It should be noted that Kaplan Meier estimator changes its value when a death has
happened. This estimator has discrete distribution (Hosmer & Lemeshow, 1999;
Collet, 2003). Confidence intervals may be calculated by using Greenwood’s formula,

which was developed by Greenwood in 1922 (Hosmer & Lemeshow, 1999).
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Comparison of two survival distributions can be done by using Log Rank Test. Non
parametric methods such as Kaplan Meier are suited for the homogeneous samples,
and their shortfall is that they cannot determine if variables or covariates are related to
the survival times (Machin et al., 2006), thus, it is often difficult to control for

potential confounders using these methods.

2.2.3 Cox Proportional Hazard Model

Cox proportion hazard model (Cox, 1972) has been widely used in analyzing survival
data (Cox & Oakes, 1984; Hosmer & Lemeshow, 1999; Collet, 2003). The Cox
proportional hazard model is given by the following:

h(tlz) = ho(t)exp(Biz; + B2z + -+ + Bpzp). 2.2.5

In the equation 2.2.1, z is explanatory vector, which does not change over time for
any individual, (B; + B2 + -+~ + By,) is vector of regression coefficients and h(¢) is
baseline hazard function. The hazard ratio (HR) for two individual with covariates

values denoted z; and zis expressed as

_ ho®exp (21 (Bi+B2++Bp))
ho()exp (zo(Bi+B2++Bp)) |

HR 2.2.6

Cox proportion hazard model is time independent. The advantage of Cox model is
that interpretation is easy and similar to that of the relative risk ratio (Hosmer &

Lemeshow, 1999; Collet, 2003; Kalbfleish & Prentice, 2002).

2.2.4 Stratified Cox Model

Stratified Cox model stratifies predictors, which are not satisfying the proportional
hazard assumptions (Hosmer & Lemeshow, 1999). Once the predictor has been
identified, the data are grouped into subgroups, and then the Cox model is performed
in each subgroup. Hosmer and Lemeshow (1999) describes stratified Cox model in
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Chapter 7 of their book. The model is given by h;, (t) = h,, ()exp(BT X)), where
k = 1,2,...5 represents the subgroup or stratum. The hazards for this model are
non-proportional because the baseline hazards may be different between subgroups or
strata. The coefficients 5 are assumed to be the same for each subgroup or stratum k.
The partial likelihood function is obtained by multiplying partial likelihood for each
stratum. The problem with this approach is that the effects of stratified predictors

cannot be identified.

2.2.5 Cox Model with Time Dependent Variables
Sometimes values of covariates may change over time t. If this scenario arises, Cox
proportional with time independent covariate may not be appropriate approach to use.
This is because the proportion hazard makes assumption that the effects of any
covariate in the model does not change at any point in time. Therefore this type of
data, where covariates are changing with time, can be modeled using Cox proportion
model with time dependent covariates. Cox model with time dependent variables has
been discussed by Cox and Oakes (1984), Hosmer and Lemeshow (1999) and Collet
(2003). In order to model time dependent effects X(t), then BX(t) = L(X) x p(t).
Where p(t) is function of time t.
If survival data has both time independent X; and time dependent covariates X;(t) .
The Cox proportion model can be written as

h(t|x(®) = hy(t) exp[Zidy B x; + TF21 a5 %, ()] 2.2.7
At any time t, hazard ratio (HR) for two individuals with different covariates x and x’
is given by

KL A

HR() =ep[ A% ~x) + D a0 0 -, ()]
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In the above formula the coefficient «; is not time-dependent. The term «j
represents overall effect of X; (¢) at all the times that covariate has been measured in

the study.

Time dependent variables can be classified either as internal or external. An internal
time-dependent variable is any variable, which can change the value of covariate over
time and is related to the characteristics of the individual. For example hemoglobin
level, blood pressure, body mass index and CD4 count. External time dependent
variable is a variable whose value at a particular time does not require subjects to be
under direct observations, that is, values change because of external characteristics to

the individuals ,for example level of environmental degradation.

2.2.6 Parametric Proportional Hazards Models
Parametric proportional hazards models are also used to analyze survival data. They
have got the same form as Cox proportional models. Hazard function at time t for a
particular patient with a set of z covariates (xq, x5, ..., x,) IS given as

h(tlx) = h,(t) exp(Brx1 + Boxz + -+ B,x,) . 2.2.8
The distribution of h, (t) has to be specified in parametric proportion hazard models.
The commonly applied parametric proportional hazards models are exponential,

Weibull and Gompertz models. Weibull models are mostly used (Collet, 2003).

2.2.6.1 Weibull Proportional Hazard model

If survival times follow Weibull distribution with scale parameter A and shape
parameter y such that survival and hazard function of a Weibull distribution are given
by S(t) = exp— (At?) and h(t) = A(t)? ! respectively. Both Aand y are greater
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than zero. When A > 1 hazard rate increases and decreases when A < 1. Wheny =
1, the hazard rate does not change, i.e. it remains constant. When y = 1, Weibull

distribution reduces to exponential distribution.

Hazard function for Weibull proportional hazard model for a particular individual
with z covariates (xq, xo, ..., X, ) IS written as

h(t|x) = A()" L exp( Bixy + Baxy + -+ Byx,). 2.2.9

2.2.6.2 Exponential Proportional Hazard Model

As already stated exponential proportional hazard model is a special case of Weibull
model when y = 1. The hazard function for exponential proportional hazard model is
constant over time. Survival function is given as S(t) = exp — (At). Hazard function
is expressed as h(t) = A. Under the exponential proportion hazard models, the
hazard function for exponential proportional hazard model for an individual is given
by

h(t]x) = 1exp( Bix1 + Boxy + -+ B,x,). 2.2.10

2.2.6.3 Gompertz Proportional Hazard Model

Survival function of the Gompertz distribution is expressed as
S(t) = exp(%(l —e))for6 <t <o and A > 0. Its hazard function is expressed

as h(t) = Aexp(6t), for 6 <t < oo and A > 0. Parameter 6 gives the shape of the
hazard function. Gompertz hazard decreases or increases monotonically. The hazard
function of an individual is expressed as

h(t|x) = Aexp(6t)exp( Bix1 + Boxy + -+ B,x,). 2.2.11
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2.2.7 Accelerated failure time (AFT) model
Parametric PH models are widely applicable in analyzing survival data. PH models
assume a constant hazard over time. In practice, however the hazard function may not
necessarily be a constant. It may either accelerate or decelerate over time. Some
parametric models are available to handle these situations. There are relatively few
probability distributions for the survival time that can be used with these models. In
these situations, the accelerated failure time model (AFT) is an alternative to the PH
model for the analysis of survival time data (Collet, 2003). These AFT models include
log-logistic and log-normal AFT models. AFT models measure direct effect of the
explanatory variables on the survival time instead of hazard. The accelerated failure
time (AFT) has been described by Collet (2003) and Hosmer and Lemeshow (1999).
For a group of patients with covariate Xi,X,,...,X,, the model is written as
S(t]x) = Sy(t]t(x) ), where Sy(t) is the baseline survival function, 7 is an
acceleration factor. Acceleration factor is ratio of survival times that correspond to
any fixed value of S(t). The acceleration factor is expressed in the formula below
T(x) = exp(ay X1 +azx; + -+ apxy). 2.2.12
In the accelerated failure time model, the covariate effects are thought to be constant
and multiplicative on the time scale. Considering the relationship of survival and
IS

hazard function, the hazard function for an individual with covariate X;, X5, ..., X,

expressed as h(t|x) =T(1—x)h0t|r(x). The corresponding log-linear form of the

accelerated failure time (AFT) model with respect to time is given by
logTi = u+ ayxy; + azxy; + -+ a,x,; + o€;, where u is intercept, a is scale

parameter and oe¢; is a random variable that is assumed to have a certain distribution.
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2.2.7.1 Estimation of AFT model

AFT models use maximum likelihood method. The likelihood of n observed survival
times, ti,ty,..,t, is given by L(a,u, o) = [T {f;i(t) ¥ {S:(t)}'7% , where
f (t;)) and S;(t;) are the density and survival functions for the ith subject at t;, and
8, 1s an event indicator for the ith observation. The log-likelihood function is written
asL(a,u,0) =Y {d;logat; + 6;logf.;(z;) + (1 — 6;)logS.;(z;,)}, where

z; = (log(t;) — p — a;xy; — Xy .= A;Xp;) /0.

2.2.7.2 Log-logistic AFT model
The description of log logistic AFT model in this section was taken from Collet

(2003). The survival and hazard function of log-logistic are given by

S@®) = h(t) =

where 8 and k are unknown parameters and k > 0.

1+9t’<’ 1+9k’

When k < 1, the hazard rate decreases monotonically and when k > 1 hazard rate

increases from zero to a maximum value and then decreases to zero.

If survival times have a log logistic distribution with parameter 6 and k, then the

e@—klog Tikt k-1

hazard function for the ith subject can be written as h; () = —————,
14efklog Tit

where 1; = exp(ayx1+ azx; + -+ a,x,) for individual i with p independent

. . . . . 1
variables. If the baseline survival function is Sy(t) = oo where 6 and k are

unknown parameters, then the baseline odds of surviving beyond time t are given by

So(t)
1-So(t) 9tk '

The survival time for the ith individual also follows log logistic

1
+e€—klog Tt

distribution, which is §;(t) = - —. Therefore the odds of the ith individual

Si(t) 1

surviving beyond time t is given by 5.0 = STk

In a two group study the log (odds) of the ith individual surviving beyond time ¢t are

33



l Si(t)

et Bx;klogt , where x; is the value of a categorical variable, which can

take a value of 1 in one group and O in the other group. If T; has a log-logistic

distribution, then &; has a logistic distribution. Therefore the survival function of

1

logistic distribution is given by S, (&) = v——

2.2.7.3 Log-normal AFT model
The description of log normal AFT model in this section was taken from Collet

(2003). When the survival times are assumed to follow a log-normal distribution,

baseline survival function is written as Sy (t) = 1 — <p(log;_u) and the hazard function
19(logt
is given by hy(t) = W where u and ¢ are parameters, 9(x) is probability
—e )t

density function and ¢(x) is cumulative density function of the standard normal

distribution. The survival function for the ith individual is

Si(®) = Si(tlt) =1—9(

logt —alxi—u

—
where 7; = exp(a1x1+a2x2 + 4 apxp). Therefore log survival time for the ith
individual has normal u + «'x;, 0.

In a two group study, one can easily get ¢ ~1[1 — s(t)] = 1/o(logt — a x; — u)

where x; is value of a categorical variable is 1 in one group and 0 in other group.

2.3 Joint Models for Longitudinal Measurements and Survival Data

Joint models of longitudinal measurements and event to time are commonly used
especially when there is association between the two processes. Mainly joint models
have been used in studies addressing AIDS, cancer issues and quality of life (Lim et

al., 2013; Sweeting & Thomson, 2011; Rizopoulos, 2010). There are approaches that
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are used to model survival and longitudinal data together. These approaches are two
stage and likelihood based. This section reviews literature for the joint modeling

methods.

Early discoveries in joint modeling focused on longitudinal data. The earlier work
utilized longitudinal data model of the following form:
X)) =f)"q; 2.3.1

In the equation 2.3.1, f(t) is vector of functions of t, and «; is the linear function.
Schluchter (1992) developed a log normal survival model. In fact the model
developed was an extension of equation 2.1.2. The model was modeled in two stages.
The author maintained regressions for individual subject during the first stage. In the
second stage, an assumption that log survival time, true slope and intercept follow
trivariate normal distribution. Maximum likelihood estimates were calculated using
EM algorithm. Other authors who proposed a model in a two stage approach were
Hogan and Laird (1997). Hogan and Laird (1997) modeled longitudinal observed

response and survival time using the linear mixed effects model.

Pawitan and Self (1993) used joint models in which times to event were modeled
using a parametric approach. Tsiatis et al. (1995) and Raboud et al. (1993) adopted
the use of Cox proportion hazard model in modeling survival times. The Cox models
were of the form:

h;(t) = ho(t)exp(yX;(t) + 7 Z)) 2.3.2.
In the equation 2.3.2, X;(t) is considered to be time dependent variable. In order to
assess association, y and n are estimated. Among the authors who used this approach

are include Raboud et al. (1993) who focused on potential bias because of the use of
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last value carried forward approach (LVCF) in providing missing data and its failure
to account for measurement error. Raboud et al. (1993) concluded that their approach

reduced bias as compared to naive approaches.

Self and Pawitan (1992) proposed another approach where inference was made on sub
models for survival time and longitudinal model. The longitudinal model was similar
to equation 2.3.1, while the hazard model was similar to equation 2.3.2. Self and
Pawitan (1992) replaced yX;(t) in equation 2.3.2 with 1 4+ yX;(t ). They further used

a two stage approach to calculate estimates.

Tsiatis et al. (1995) used a two stage approach in their work. They used the linear
mixed effect model to model longitudinal data sub model and Cox proportion hazard
sub model to analyze event time data. They maximized partial likelihood in order to
produce estimates. The two stage approach was further investigated by Bycott and
Taylor (1998), Dafni and Tsiatis (1998) and Tsiatis, DeGruttola and Wulfsohn (1995).
They all concluded that this approach reduce bias for the estimates y and n shown in

equation 2.3.2.

Methods based on likelihood were also investigated. These methods were based on
specification of likelihood function for parameters in equation 2.3.2 and

Yi(ty) = Xi(tyy) + e (ty). 2.3.3
In equation 2.3.3, Y; is observed longitudinal data, e;(t;;) is measurement error and is

distributed normally and has zero mean and its variance is o.
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DeGruttola and Tu (1994) used a longitudinal data model shown in equation 2.3.1 and
transformed event time i.e. lognormal model for survival time model. They used EM
algorithm to maximize the log-likelihood. Wulfsohn and Tsiatis (1997) introduced the
use Cox proportional hazards model and longitudinal variables when analyzing this
kind of data. They used random effects for the longitudinal process. In this model,
estimates that maximize joint likelihood of survival and longitudinal processes are
calculated using EM algorithm. The model that was proposed by Wulfsohn and
Tsiatis (1997) was extended by Zeng and Cai (2005) to include the covariates in the
linear mixed effects random model in equation 2.3.1 in the longitudinal data. For the
survival data, they used multiplicative hazard models. The relationship between the

survival time and longitudinal processes is linked to the random effects.

Xu and Zeger (2001) introduced another concept in which general latent variable
model was used to analyze for survival and longitudinal data simultaneously.

Henderson et al. (2000) proposed model for modeling the longitudinal and survival
data. They linked survival and longitudinal data by using the latent stochastic process.
Parameters were estimated using EM algorithm in which Gaussian Hermitte

numerical integration was used during the E-step.

Lin et al. (2002) proposed latent class models for analyzing longitudinal and event to
time data. If observed longitudinal trajectories depict heterogeneity in the observed
longitudinal trajectories, the linear mixed effects models cannot fully measure the
covariates. The latent class model provides way to handle additional heterogeneity to

uncover distinct subpopulation (Song, 2013).
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Faucett and Thomas (1996) modeled longitudinal data and event time by using
Bayesian approach. Faucett and Thomas (1996) used Gibbs sampling approach to
estimate the parameters. Xu and Zeger (2001) generalized this approach presented in
model 2.3.4.
X)) =f®"a; + U;(t) 2.3.4.

In the equation 2.3.4, U;(t) is stochastic process with zero mean. Wang and

Taylor (2001) decided to include longitudinal model similar the one shown in
equation 2.3.4 in the Bayesian framework. They used MCMC to analyze their data.
Brown and Ibrahim (2003a) developed a semi-parametric Bayesian approach of the
form of equation 2.1.2. Brown and Ibrahim (2003b) developed a method for analyzing
survival time and longitudinal data, when a fraction of study participants has been
cured. Also Law et al. (2002) proposed a method for analyzing longitudinal and
survival time data when a fraction of study participants has been cured. There was a
further development in 2008. Ye and Taylor (2008) proposed a joint model with a
linear growth curve model with random intercept and slope for the longitudinal

variable measurements.

The disadvantage of likelihood approach is that it is computational complex (Tsiatis
& Davidian, 2004). Because of this problem Tsiatis and Davidian (2001) proposed a
method, which is simple to implement. Basing on equations 2.3.1 and 2.3.2
y and n can be estimated easily. This approach uses conditional score. The concept of
conditional score was pioneered by Stefanski and Carroll (1987) in order to analyze
generalized linear models with a measurement error. The conditional score works by
“treating a; as nuisance parameters and conditioning on an appropriate sufficient

statistics” (Tsiatis & Davidian, 2004).
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2.4 Shared Random Effects Models

The Shared Random Effects Model (SREM) is direct extension of the idea of survival
model with time dependent covariates by considering as covariates some
characteristics of the mixed model defined for the longitudinal data (Faucett &
Thomas, 1996; Henderson et al., 2000; Ibrahim et al., 2010; Wu et al., 2012). The
characteristics are functions of the individual random effects of the mixed model that
capture the individual deviations to the mean trajectory longitudinal data. Joint
models that use shared random effects have two sub models namely longitudinal data

sub models and survival data sub model.

2.4.1 Longitudinal data Sub model

For the Longitudinal sub model, assume that the repeated measures Y;(t;;) are the
measures of true unobserved value forj = 1,2, ...,n;. The mean change overtime of
Y;*(t;;) can be modeled by taking into account the correlation within the repeated

measures of a same subject.
Yi(ty) = Y7 () + €(ty) =X ()" B+ Zi(t)"b; + € (t)) 24.1

Where X;;(t;) and Z;(t;;) are p vector and q vector of time dependent covariates
associated with the p vector of fixed effects g and q vector of Gaussian random
effects b; with mean 0 and variance-covariance matrix . The design matrices X;; and
Z; will be used for the row vectors X;;(t;)" and Z;(t;)" respectively for
j=1,2,..,n;. Inequation 2.4.1, the fixed part of X;; represents the mean trajectory
of the repeated measurements over time, while Z;b; defines the individual deviation
with relative to the mean trajectory. The vector of measurements

is € = (€;(ti1),--,€(tin,)) . Further assume that ¢; is independent and follow
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multivariate Gaussian distribution of mean 0 and diagonal variance-covariance

matrix ¥; = azlnl., €; and b; are independent.

2.4.2 Survival Sub model

The risk of event can be modeled using any survival model but proportional hazard
models are mostly considered and defined as follows:

hit(Xs, b)) = ho(£)eXsiv+hbut)n 2.4.2

where hy(t ) is the hazard function for baseline and y defines association between p
vector of covariates of Xg; (that can be time dependent) and the survival time. The
function h(b;, t) is a multivariate function of the random effects b; defined in (2.4.1)
and is associated with the vector of parameter n. The association between the
longitudinal and survival processes is measured by coefficients n, and h(b;, t) defines

the nature of the dependence between the two processes.

2.4.3 Maximum Likelihood Estimation

Shared random effect models (SREM) can be estimated by considering the joint
likelihood from the longitudinal and survival sub models.

Let 6 be the whole vector of parameters defined in (2.4.1) and (2.4.2). The log

likelihood of the observed data can be written as:
N
1) = IOg[H(fb fr (Vi |1 X, bi; 0) fr (T | Xy, bi; 0)fy, (by; 6)db;)]

1(6) =X log (fbifY(Yi (Y;1X1i, bi; Oy (T;|Xgq, by; 0)Ft S;(Ti| X3, bi; 6) £ (bi; Q)dbi) 243
Where f, and f, are multivariate Gaussian density functions of b and Y with

respectively mean 0 and X;;8 + Z;b;, and variance-covariance matrix B and %;,
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h; (T;|X;, b;; ) is the hazard function defined in (2.4.2) and recorded at the observed

time. S;(T;|X;, b;; ) = e~ Jo mi(TilXstbi8)dt s the derived survival function.

The maximum likelihood estimates can be calculated by iterative algorithms such as
EM or Newton-Raphson algorithm (Rizopoulos, 2010). Zeng and Cai (2005) have
shown that this estimator has good asymptotic properties. Guo and Carlin (2004) used

a Bayesian approach to estimate these joint models.

2.4.3.1 Convergence problems

Joint models that use shared random effects have convergence problems. For
example, equation (2.4.3) involves two integrals that do not have analytic solutions.
The two integrals are usually approximated by numerical integration with Gauss-
Hermite and Gauss-Kronrod quadratures (Henderson et al., 2000; Rizopoulos, 2010).
The numerical approximations of the integrals, mostly the Gauss-Hermite for the
random effects makes the calculations to be slow. In fact, the integral over the random

effects is usually multidimensional with size g.

When q is less than 3, the Gauss-Hermite quadrature remains the standard method but
in higher dimension settings when q is more than 3, alternative methods may be
preferred to reduce the computational time. These methods include Laplace method,
which was proposed by Rizopoulos et al. (2009) or a Monte Carlo method. Sene et al.
(2014) noted that the structure of B does not intervene in the computational

complexity, only the number q of random effects is limiting.

In order to improve the accuracy and reduce the number of nodes in Gaussian

quadratures, adaptive versions have been proposed (Lessaffre & Spiessens, 2001).
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The adaptive versions consist of centering and rescaling the integral around its modal
value until the nodes are systematically placed at the optimum position. The challenge
with this technique is that it is time consuming because it requires a subject and
iteration specific optimization to define the optimum position. In the effort of
retaining the same precision but simplifying the numerical aspect, Rizopoulos (2011)
developed a pseudo-adaptive version in which the integral is centered and rescaled
according to the posterior distribution of the random effects defined in the linear

mixed model in (2.4.1) but estimated separately and once for all in a first step.

2.5 Other Types of Dependence
Other types of dependency can be assumed. Instead of considering strictly random
effects shared between the two sub models, another approach such as correlated error

terms can be considered.

2.5.1 Correlated error structures

Joint models with correlated error structures have been used by Wang and Taylor
(2001) and Henderson et al. (2000). Wang and Taylor (2001) used an integrated
Ornstein Uhlenbeck process. Originally Faucett and Thomas(1996) and Wolfsohn and
Tsiatis(1997) used a linear mixed model with only a random intercept and a random
slope but any function of time can be considered in X;;(t;;) and Z;(¢;;) in (2.4.1) to
capture the best trajectory of the repeated measures.

Henderson et al. (2000) used latent Gaussian stochastic process shared by the
longitudinal and time to event process. Verbeke et al. (2010) noted that there is
conflict for information between the random effects structure and measurements error

structure that assumes correlated errors. This is because both structures aim at

42



modeling the marginal correlation in the data. Further Verbeke et al. (2010) advised
that it is necessary to opt for either correlated error terms or an elaborate random
effect structures (that uses for splines in design matrix Z;). Both random effects and
correlated error term should not be used at the same time. Tsiatis and Davidian (2004)
provide more details on the differences between random effects and correlated error

term.

2.5.2 Model Formulation

As it has already been said Henderson et al. (2000) proposed a method that uses
correlated error structures. This sub section reviews the method for joint modeling of
survival and longitudinal data proposed by Henderson et al. (2000) in their paper
entitled “Joint modeling of longitudinal measurements and event time data”.

Suppose that there are n individuals in a longitudinal study, studied for a period
interval of (0, c]. The ith individual gives measurements y;;, wherej = 1,2, ...,n; at
times t;;, j = 1,...,n;. The realizations of counting process {N;(u) for 0 <u <t}
for event time and predictable zero-one process {H;(u) for 0 < u < t } that shows if
an individual is at risk of having the event of interest, in our case the event of interest

is death.

Henderson et al. (2000) proposed a method for analyzing joint model on longitudinal
measurement and time to an event. This method is the extension of the work of
Woulfsohn and Tsiatis (1997). This method allows the survival and longitudinal data
to be linked by latent stochastic process. Henderson et al. (2000) suggested latent

bivariate Gaussian process, in which W;(t) = {W;;(t), W,;(t)}. The repeated
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measurement process depends on Wy;(t) while survival process depends on W5, (t).
The longitudinal measurement process takes the form:
Yi =y () + Wi(t) + ¢ 25.1

In the equation 2.5.1, e; is an error term and is distributed as N(O,R;)
and Var(e; ) = o2.

In the equation 251, w; () = ((w(t0), oo u; (E))T and

Wi(t) = (Wi (ti), oo, Wi ()T In fact u;(t;) is described as linear model, for
example u; (t;) = X1;Bu.
For the latent process Wj;(t) , Henderson et al. (2000) consider W;i;(t) = Uy; +

U,; (t) where (Uy;, Uy;) is a bivariate normal random vector, which has zero mean and

: . ot ok
variance covariance G; = , 5 |.
02 0y

It can be noted that model 2.5.1 and 2.1.2 are similar. In fact u;(t;) in model 2.5.1 is
X1;By in model 2.1.2, while W;(t;) in 2.5.1 corresponds to Q;s; in (2.1.2) with
s; = (U, Up)'.

In joint model, the time to event process is modeled by using Cox proportional
hazard model

hi(t) = ho (D)o (Dexp(xz;Bs + Wy (1)), 2.5.2

In the equation 2.5.2, a(t) is left unspecified in order to avoid the impact of the
parametric assumptions. The longitudinal measurement and time to an event are
assumed to be conditionally independent given W;(t) . In order to create association
between two processes, W5, (t) is taken to be related to some components of W;;(t).
This has been achieved by using the following general equation W,;(t) = y,Uy; +

v2Uy + y3Wy;(t) . For instance, joint model with W,;(t) = y,Uy; + y,U,; would
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allow both random intercept Uy; and slope y,U,; involved in equation 2.5.1 to affect
the risk event.
To fit a model with random intercept only, the following formula: Y;; = X, +

U,; + Z;; for longitudinal sub model is used. The formula for hazard sub model is

h;(t) = hy(t)exp{X;,5, + yU,;} (Phillipson et al., 2012). Joint model with random
intercept and slope is modeled using following; Y;; = X B+ Uy + Uyt + Zy; for
longitudinal sub model and h;(t) = ho(t)exp{X;,S, + y(U,; + Uy;t)} for time to
event sub model. Joint model with quadratic random effects is modeled using
following; Y;; = X;; 81 + Uy + Uy;t;; + Z;; for longitudinal sub model and h;(t) =
ho (Vexp{X;, B, + y(U,; + Uyt + Uy;t?)} for time to event sub model (Phillipson et

al., 2012).

2.5.3 Likelihood Function

Marginal distribution for observed measurement is obtained by factorizing the
likelihood for observed measurements and product of conditional distribution of event
N given observed values of Y. Henderson et al. (2000) described the likelihood

function as follows.

Let 6 represent combined vector of unknown parameters. The likelihood L =

L(6,Y,N) can be expressed as

L= LYxLN|Y = Ly(g, Y)x EW2|Y [LN|W2 (9,N|W2)] 25.3
In equation 2.5.3, Ly(6,Y) is a standard form corresponding to marginal normal

distribution of Y conditional likelihood for event data, Ly, (8, N|W,) depicts any
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likelihood contribution coming from achieved number of measures before any failure
(Henderson et al., 2000). Let A,y (t) = fot @, (u)du to represent cumulative baseline
intensity, Ly, can be written as

Lyyw, (8, NIW,) =

[TTTe[exp{ Xo; () By + Wai (D)o (£)]*Vi®x exp[— fOT H; exp{ X;(8) By + Wy (£)dA, (1),
To come up with L requires an expectation with respect to distribution of infinite

dimensions process W, given longitudinal measurements Y.

2.5.4 EM Estimation

For the EM algorithm, Henderson et al. (2000) extended the EM algorithm presented
by Wulfsohn and Tsiatis (1997). The procedure works by iterating up to when
convergence is reached. For the E step, consider random effects U = (Uy, U, U3)" as
missing data. The expected value can be determined conditional on observed data
(Y, N) for all h(u) appearing in the (6,Y, N, U). This is the complete data likelihood.

The conditional expectation can be expressed as
E[R@IY,N] = {f R f (NI fUIY)du}|f (N]Y) 2.5.4

Where f(N|Y) = [(N|U)f(U|Y) du 255
In the equation 2.5.4 and 2.5.5, f(N|U) is the contributions of the ith subject to the
event time of complete likelihood and f(U|Y) is the conditional of random effects
given longitudinal data. The term U is low dimension, therefore is approximated by
using Gauss-Hermite quadrature. The Gauss-Hermite quadrature is also used to
evaluate the final log likelihood, log(L(68,Y,N) = log(Ey[L(6,Y,N,U)|Y,N]. In the
second step called maximization, the complete data likelihood is maximized. The

h(u) function is replaced by its expectation.
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2.5.5 Joint Latent Class models

Apart from joint models with shared random effects. The alternative approach is joint
latent class models (JLCM), which relies on a different idea. JLCM assumes that the
population is heterogeneous and therefore can be divided into a finite number of
homogeneous subgroups or classes. Each class or subgroup is characterized by a
specific trajectory of the repeated measurement variable and a specific risk of event
(Lin et al., 2002; Proust-Lima & Taylor, 2009). Proust-Lima et al. (2012) argue that
the latent class structure can be seen as a latent stratification, which entirely captures

the dependency between the longitudinal and survival processes.

2.6 Extension of Joint Models

In the previous sections, the discussion has focused on joint models based on a Cox
model for right censored survival data and a LME model for longitudinal data. Other
extensions of joint models for survival data and longitudinal data can also be
considered. For example, for survival data, instead of using Cox proportion hazard
model, other form of models can be used. These forms include accelerated failure
time (AFT) models, models for interval censored data and models for recurrent

events.

For longitudinal data, nonlinear, generalized linear mixed models, semi parametric or
nonparametric mixed models can be used. Wu et al. (2012) argued that whether a
person uses different survival models and longitudinal models, basic ideas and
approaches for inference are the same. This subsection reviews some of the

extensions of joint models.
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2.6.1 Joint Models Based on an Linear Mixed Effect Model and an Accelerated
Failure Time Model

In joint modeling of longitudinal and survival data, the AFT model can be used to
model the survival process. This review focuses on an AFT model with measurement
errors in time dependent covariates. For longitudinal data, the linear mixed effect
models can be used. This review is based on the work of Tseng et al. (2005). A semi

parametric AFT model can be expressed in the similar way as the Cox model:

he(t) = hy fo exp{—z (WB}du] exp{~z{(O)B)

where h; (t) is the hazard function of the ith individual at time t, hy(t) is the baseline
hazard function, and z;(t) is the unobserved true covariate value at time t for the
observed measurements z;(t). Tseng et al. (2005) proposed a likelihood method
using an EM algorithm.

The likelihood function for all observed data is be written as

1@ = | [ £cuoiziho prriwe @ oyfoniwdw
. 6; -
* [i] i,'Zi ) t i;zi )
where. £ (t, 8,177, ho, B) = [o{(ei; 0, w)} LA expi— %77 by ()

where z;™ denotes the covariate history and ¢ is a known function.

Wou et al. (2012) noted that handling the AFT structure in the joint modeling setting is
more difficult than for the Cox model because f(t;, 6;|z;, ho, ) is more complicated
and the baseline function hy¢(¢t;; z™, ) involves unknown quantities. Further, Wu et
al. (2012) observed that the point mass function with masses assigned to all
uncensored survival times t; cannot be used for the baseline hazard function h,. In

order to avoid this problem, Tseng et al. (2005) assumed the baseline hazard function
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h, to be a step function that takes constant values between two consecutive failure
times. Monte Carlo EM algorithm was used to obtain the MLEs. In the E step, Monte
Carlo method was used to approximate the conditional expectations. The M step

involves more complicated computations due to the complicated baseline hazard hy.

2.6.2. Joint Models with Interval Censored Survival Data

The previous sections have so far focused on right censored survival data. In some
cases events are known to occur over certain time intervals. This kind of survival data
is called interval censored. To simplify things, it will be assumed that all individuals

were assessed at the same times.

Let S; be the time to an event i.e. survival time for individual i, with observed
value s;. Letr; = (1, ..., 7, )T denote the vector of event indicators such that ry =1
if individual i has an event occurred from time t;_; to time ¢;, and let r;; =0
otherwise fori = 1,2, ...,n; j 1,2,...,m. Assume that r;; = 0 forall i.
Let p; =P(t_1 <S;<t) and let m; =P(t_1 <SS, <t|S,=¢t_)=1-
P(S; =t |Si=t1).
Then, it follows that p; = (1 —m), (1 —m1) ... (1 — m;;_1)m; . The probability
function for the event indicator vector r; can be written as

f@) =Mp, =M m, (1 —m;)' o 2.6.1
It can be noted that equation 2.6.1 is the probability function for a Bernoulli

distribution. Further the observed error prone covariate value z can be introduced and

z; is its true value. Again assume
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log{—log(1—m;)} =BTz +y; , where B and y = (y1,¥2,...¥m)" are unknown
parameters. Then the probability function of r; can be written as f(; |z, 5,7v) .
Denote 6 as the collection of all parameters in all models, the likelihood for observed
data can be expressed as:

Lo(8) = [TisulS f(zi lwi, @, ) f (1 Iwy, B,v) f (wi [W)dw;] 2.6.2
In the equation 2.6.2, f(z; |w;, @, o) is the conditional probability density function,
given the random effects w; and f(w; |W) be the marginal probability density
function for w; with covariance matrix W'.
Maximum likelihood estimators (MLE) of parameters 6 can be calculated by
maximizing the observed data likelihood L, (8).
Evaluating L, (8) can be difficult because it involves an evaluation of intractable and
possibly high-dimensional integral (Wu et al., 2012). Monte Carlo EM algorithms can

be used.

2.6.3. Generalized Linear Mixed Models and Nonlinear Mixed Effects Models for
Longitudinal Data

So far, this study has focused on LME models for modeling the longitudinal data. It is
also possible to consider other types of models for longitudinal data. Wu et al. (2008)
and Wu et al. (2010) considered nonlinear mixed effects (NLME) models for
modeling the longitudinal data in joint models. When the longitudinal data is not
normally distributed, generalized linear mixed models (GLMMs) can be used.
GLMMs are nonlinear models and also empirical models.

When dealing with longitudinal models that are nonlinear, both two-stage and

likelihood approaches for joint models may still be applied (Wu et al., 2012). The
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major challenge with this type of models is that computation is more demanding

because of the nature of nonlinearity of the longitudinal models.

2.6.4. Joint Models with Missing Data

Survival models with measurement errors in time dependent covariates have received
much attention in the joint models literature. Another common situation is
longitudinal models with informative dropouts, in which survival models can be used
to model the dropout process. In both cases the focus is on creating association
between longitudinal and survival processes. Joint models have also been considered
in which the focus is on more efficient inference of the survival model by using
longitudinal data as auxiliary information (Xu & Zeger, 2001; Faucett et al., 2002;
Hogan & Laird, 1997) or assume that the longitudinal process and the survival
process to be governed by a common latent process (Henderson et al., 2000).

When missing data are non ignorable, missing data process is normally included in
inferential procedures. It is easy to incorporate missing data mechanisms in joint
model inference that use likelihood methods (Wu et al.,, 2012). However the
computation becomes more challenging. Wu et al. (2008) and Wu et al. (2010)
considered the missing data problems for joint models by using Monte Carlo EM

algorithms and Laplace approximations.

2.6.5 Models with Longitudinal data and Competing Risks

Standard methods for joint modeling of longitudinal and survival data allow for one
event with a single mode of failure and an assumption of independent censoring.
When there are several reasons why an event can happen, or other informative

censoring happens, it is known as competing risks (Williamson et al., 2008). The
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standard methods are not applicable to survival data with competing risks or

informative censoring (Elashoff et al., 2007).

Elashoff et al. (2007) proposed a method for analyzing longitudinal measurements
and competing risks failure times that allow for more than one distinct failure type.
The method handles informative censoring by treating it as a competing risk in the
model. It can also be used to model non ignorable missingness after event times. The
longitudinal data is modeled using linear mixed effects and a mixture sub model is
used to analyze competing risks survival data. The mixture model for competing risks
enables one to evaluate the effects of some factors on both the marginal probabilities
of occurrence of the risks and the conditional cause specific hazards. Parameters were

estimated using an EM algorithm in both sub models.

Williamson et al. (2008) proposed a method that uses cause specific hazards sub
model to allow for competing risks with a separate latent association between
longitudinal measurements and each cause of failure. The joint analysis longitudinal
measurements and competing risks failure time data is more challenging as compared
to joint analysis of longitudinal measurements and survival data with a single failure

type (Elashoff et al., 2007).

2.6.6 Joint Models with Multivariate Longitudinal data Outcome

Joint models can also be extended to multivariate cases. The longitudinal processes
and event processes can be modeled simultaneously. Computation for joint models of
this type is more challenging as compared to univariate cases (Xu & Zeger, 2001;

Song et al., 2002).
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Chi and Ibrahim (2006) proposed a likelihood approach that extends both longitudinal
and survival components to multi-dimensional. A multivariate mixed effects model is
used to capture dependence among longitudinal data over time and also dependence
between different variables. For the survival component of the joint model, a shared
frailty was introduced in order to induce correlation between failure times. The
marginal univariate survival model is then applied to each marginal survival function.
The multivariate survival model has a proportional hazards structure for the
population hazard when the baseline covariates are specified through a specific
mechanism. This method is also capable of modeling survival functions that have

different cure rate structures.

Rizopoulos and Ghosh (2011) proposed a semi parametric multivariate joint model,
which relates multiple longitudinal outcomes to time to event. In order to allow for
greater flexibility, key components of the model were modeled non-parametrically.
For the subject specific longitudinal evolutions a spline based approach was used.
Baseline risk function was assumed to be piecewise constant. Distribution of the

latent terms was modeled using a Dirichlet process prior formulation.

Baghfalaki et al. (2014) proposed a method for analyzing multivariate longitudinal
data comprising of mixed continuous and ordinal responses and a time to event
variable. The association structure between longitudinal mixed data and time to event
data was modeled using a multivariate zero-mean Gaussian process. Discrete ordinal
data was modeled by making an assumption that a continuous latent variable follows
the logistic distribution. Continuous data was modeled by using a Gaussian mixed

effects model. Baghfalaki et al. (2014) used an accelerated failure time model for the
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event time variable. Parameters were estimated by a Bayesian approach that uses

Markov Chain Monte Carlo.

2.7 Model Selection
In some cases, it becomes necessary to compare models, which are not nested.
Models, which are nested, can be compared using the likelihood ratio test. Models
that are not nested can be compared using approaches such as the Akaike information
criterion (AIC) and Bayesian Information Criteria (BIC). AIC is defined as

AIC = =21 + 2(k+ w) 2.7.1
where [ is the log-likelihood, k is the number of covariates in the model and w is the
number of model specific ancillary parameters. The term 2(k + w) in equation 2.7.1
can be thought of as a penalty for including extra predictors in the model. Smaller
values of AIC suggest a better model (Hedeker & Gibbon, 2006). Another approach
for model selection is BIC. BIC may be written as
BIC = —21 + (k + w)In(n), where In(n) is the log of the sample size n. The
model is considered to be better if it has smaller the value of BIC (Hedeker &

Gibbons, 2006).

The deviance information criterion (DIC) is considered as a hierarchical modeling
generalization of the AIC and BIC. DIC is useful in Bayesian model selection
problems, in which posterior distributions of the models are obtained by Markov
chain Monte Carlo (MCMC) simulation. The problem of using AIC, BIC and DIC is
that there are no formal statistical tests to compare different AIC values, different BIC
values, and different DIC values respectively. Just like AIC and BIC, DIC is

asymptotic approximation as the sample size becomes large. This approach is valid
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when posterior distributions are approximately multivariate normal. AIC has been
used in this thesis in order to compare models. AIC penalizes the number of

parameters less strongly than does the Bayesian information criterion (BIC).
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CHAPTER 3 METHODOLOGY

3.1 Introduction
Chapter 3 describes the methodology used in this study. In particular, study design,

data collection and data analysis and likelihood function for joint model are described.

3.2 Study design

The study used secondary data, which was collected at Queen Elizabeth Central
Hospital, in Malawi. The study design used was prospective cohort study, and
participants were followed for a period of 14 weeks. The study participants were
randomized into two groups using block randomization. The first group received corn
soya blends (CSB), and other group received ready to use therapeutic food (RUTF).
In total there were 491 participants, of these 246 received CSB and 245 received
RUTF. In this study, weight of patients were measured at fixed times (4 times) for a
total duration of 14 weeks (3 and half months). Ethical approval was received from

the College of Medicine Research Ethical Committee (COMREC).

3.2.1 Participants and Duration

The study registered male and female who were HIV positive and were at least 18
years old. Participants were excluded if they were pregnant women, mothers who
were breastfeeding and were participating in another supplementary feeding program.

The study took place in the year 2006.
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3.3 Nutritional VValue of Food Supplements
The nutritional contents of the CSB and RUTF supplementary foods are given in
Table 1. Nutritional contents given to patients in the CSB and RUTF supplementary

foods were almost similar.

Table 1: Nutritional contents available in Corn Soya Blends and Fortified

Ready to use therapeutic | Corn-soy blended | Estimated Average

food (RUTF) flour (CSB) Requirements

(245 g/day) (374 g/day) Women Men
Energy (kJ) 5694 5694 13252 13252
Protein (Q) 35.5 50 46 56
Fat (g) 91 26.2 - -
Calcium (mg) 830 258 1000 1000
Phosphorus (mg) 700 1050 580 580
Magnesium (mg) 240 500 255 330
Potassium (mg) 2880 1700 4700 4700
Selenium (ug) 78 22 45 45
Zinc (mg) 8 8 8 11
Copper (mg) 0.9 2.9 0.9 0.9
Iron (mQ) 8 16 18 8
Vitamin A (pg) 710 1040 700 700
Vitamin C (mg) 90 26 60 75
Vitamin D (pg) 5 5 6 5
Vitamin E (mg) 52 32.5 12 12
Niacin (mQg) 14 13 11 12
Folic acid (pg) 400 153 320 320
Thiamine (mg) 11 13 0.9 1.0
Riboflavin (mg) 1.3 0.8 0.9 11
Vitamin B-6 (mg) 1.3 1 11 11
Vitamin B-12 (ug) | 1.4 0.5 2.0 2.0

Source: Ndekha et al (2009)
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3.4 Data Description

The dataset had the following variable: type of food supplement given to the
participants, sex of participant, TB status of patient, whether participant was receiving
cotrimoxazole or not, age of participant in years, CD 4 count of participant, and
hemoglobin level of participant. The categorical variables were coded as follows: type
of food supplement was coded as 1 if participant was receiving CSB and O if
receiving RUTF. Sex of participants was coded O if participant was female and 1
when participant was male. If participant had TB it was coded 1 and O otherwise. If
participant was receiving cotrimoxazole, it was coded 1 and O otherwise. Body mass
index was a continuous variable and was measured in kg / m% Body mass index was
the only repeated measurement variable. Each participant was expected to have 4
visits. Hemoglobin level of participants was a continuous variable and was measured
in mg/dl. CD 4 lymphocytes count of the patients was also measured. Survival time

was measured in weeks.

3.4.1 Missing Data
As it has already been stated, this study used secondary data. The study used a

complete dataset.

3.5 Data Analysis

3.5.1 Exploratory Data Analysis

The exploratory data analysis was done using statistical package called R, version
2.15.2. For categorical variables such as sex, TB status, proportions were used to
summarize the categorical variables. Mean and standard deviation were used if the

variable was continuous and normally distributed. Median and inter quartile range
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were used if the variables were skewed. Confidence intervals were calculated at 95%

where appropriate. Hypotheses were tested at 5% level of significance.

For each visit, the BMI for the participants in 2 groups were compared using a t test at
5% level of significance. Histograms for age, BMI, CD 4 count and hemoglobin level
were plotted. Also graph subject specific evolutions in time for BMI were plotted for
the 2 groups receiving food supplement, namely CSB and RUTF. Kaplan Meir graph
was plotted in order to assess the survival of the 2 groups receiving different food

supplements.

3.6 Model Fitting

3.6.1 Model for Survival Analysis

This model was fitted using survival package in R. The package survival is able to fit
Cox proportion model with either time independent covariate model or time
dependent covariate model. Cox proportion model with time dependent model was
fitted. The dependent time covariate Cox model has been described in section 2.2.5.
The model has age, sex, CD4 count and hemoglobin level as baseline time

independent covariates and body mass index was fitted as a time dependent covariate.

3.6.2 Model for Longitudinal Data

This longitudinal model was fitted using R package called “nlme”. The linear mixed
effect regression model was fitted. In the model body mass index was outcome
variable, while age, sex, CD4 count hemoglobin level were independent variables.
The linear mixed effects regression model has been discussed already in section

2.1.1. The model with intercept and random slope were used.
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3.6.3 Model fitting for Joint Modeling

Joint modeling analysis was done in R. Statistical package joineR used to analyze
data in this study was developed based on the work of Henderson et al. (2000) and
Wulfsohn and Tsiatis (1997). JoineR package provide a function for fitting Wulfsoln
and Tsiatis models called joint. This function permits the user to choose from three
models for the joint random effects namely; random intercept; random intercept and
slope; and quadratic random effects (Phillipson et al., 2012). Other function in joineR
is jointdata, which supplies the data for analysis. Surv object provide survival data

and long provide longitudinal data.

3. 7 Confidence Intervals and Standard Errors for Joint Model

The joineR uses bootstrap methods to calculate confidence intervals and standard
errors. Phillipson et al. (2012) described bootstrap is a general computational tool that
can be used to assign measures of accuracy to statistical estimates. Phillipson et al.
(2012) further described how confidence intervals and standard errors were calculated
in joiner using bootstrap method. The method works by generating N independent
bootstrap samples {W™}, {W*%},. . . {W™}. Every independent sample contains n
data values drawn randomly with replacement from the original data {W}. In this
case, original data comprises of both longitudinal and survival outcomes including
survival time, censoring indicator, longitudinal measurements and treatment type

(Phillipson et al., 2012).

Standard error of an estimate 0 is obtained by calculating sample standard deviations
of the N bootstrap samples. Confidence intervals are calculated as follows: Let 0'® <

L< o™ represent the ordered bootstrap replications of 6. The 95% confidence
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interval for 0 is approximated by (600N g* 095Ny (phjllipson et al., 2012). Joiner

uses joint.se function to calculate confidence intervals and standard errors.

The package joiner used for joint modeling survival and longitudinal data does not
produce the p values. Therefore in order to assess whether the variable is significant
or not, confidence intervals are used. If the confidence interval range contains 1, the
variable is significant, if the confidence interval range does not contain 1, then the

variable is not significant.
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CHAPTER 4 RESULTS

Chapter 4 contains an analysis of the data collected and interpretations of the findings

of this study.

4.1 Exploratory Data Analysis

The study interviewed 491 HIV positive patients who were starting antiretroviral
therapy (ART). Out of these, 294 (59.8%) were female and 197 (40.1%) were male.
The study participants were randomized into 2 groups, 246 patients were given corn
soya blends (CSB) and 245 patients were given ready to use therapeutic food (RUTF).
The median age was 33.8 years with inter-quartile range of (28.2 - 41.7 years),
median age for women was 31.7 years with inter-quartile range of (26.9- 37.9 years)
and for men was 37.4 years with inter-quartile range of (32.0- 45.0 years). Median age
for group getting CSB was 34.0 years, for group receiving RUTF was 33.1 years.
More than two thirds (68.8%) of the participants received cotrimoxazole. For group
receiving CSB, 67.1% were receiving cotrimoxazole, 70.6% of participants in RUTF
group received cotrimoxazole. The mean hemoglobin level was 9.7 mg/dl with
standard deviation of 2.1 mg/dl. Among patients receiving CSB, mean hemoglobin
level was 9.8 mg/dl and standard deviation was 2.2mg/dl. Mean hemoglobin level for
RUTF group was 9.5mg/dl and standard deviation was 2.0 mg/dl. Median CD4 count
for the participants was 90; with inter quartile range of (33-184). Patients who were

receiving CSB had median CD4 count of 91, with inter quartile range of (33-185);
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those who were receiving RUTF had median CD4 count of 88; with inter quartile

range of (34-182). Almost one fifth of the participants (21.8%) had tuberculosis (TB).

Out of 491 patients, who participated in this study, 27.7% died. Among participants

receiving CSB, 26.0% died and 29.4% of participants receiving RUTF died. Among

female 24.5% died, Cl (19.7%, 29.8%); while among male 32.5% died, CI (26.0%,

39.5%), Refer Table 2.

Table

Groups

2: Descriptive Results for Participants According Food Supplement

Food Supplement Group receiving | Group receiving | All participants
CSB(n= 246) RUTF(n=245) (n=491)
Sex
Female 142 (57.3%) 152 (62.0%) 294(59.9%)
Male 104 (42.3%) 93 (38.0%) 197(40.1%)
Age in years- median(inter | 34.0(29.9-42.1) | 33.1(28.8-41.3) | 33.8(28.2-41.7)

quartile range)

Male 38.6(32.2-45.0) | 36.9(31.6-45.4) | 37.4(32.0-45.0)
Female 31.3(26.5-38.9) | 31.9(27.1-37.5) | 31.7(26.9-37.9)
No of patients Died 64(26.0%) 72 (29.4%) 136(27.7%)
Female who died 42(27.6%) 30(21.1%) 72 (24.5%)
Male who died 32 (32.3%) 32(32.7%) 64 (32.5%)
Number  of  patients on | 165 (67.1%) 173(70.6%) 338(68.8%)
Cotrimoxazole
Hemoglobin- mean(sd) 9.8(2.2) 9.5 (2.0) 9.7(2.1)
CD 4 Count of participants 91(33-185) 88 (34 - 182) 90 (33 -184)
median(inter quartile range)
No of patients with TB 60(24.5%) 47(19.7%) 107(21.8%)
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Body mass index (BMI) was calculated for all the visits. See Table 3 that gives values
of the BMI for the study participants. At the enrolment time, mean BMI was 16.5
kg/m?, with standard deviation of 1.4 kg/m?. Mean BMI for group receiving CSB was
16.5 kg/m? and 16.5 kg/m? for group receiving RUTF. There was no significant
difference in BMI for patients who were receiving CSB and RUTF, t test = 0.36, p
value = 0.717. Second visit took place 2 weeks later, at that time the mean BMI for all
the study participants was 17.0 kg/m?, with standard deviation of 1.6 kg/m?. Mean
BMI for both groups was at 17.0 kg/m?. No significant difference was detected during
second visit, t test = 0.01, p value = 0.992. During the third visit, BMI for group
receiving CSB was 17.5 kg/m? and BMI of group receiving RUTF was 17.7 kg/m?.
There was no significant difference in the BMI of the two groups, t test = 1.33, p
value = 0.184. During forth visit, BMI for the group receiving CSB was 17.8 kg/m?
and BMI for the group receiving RUTF was 18.3 kg/m® There was a significant
difference in BMI of the two groups, t test = 2.38, p value = 0.018. At the visit 5 (14
weeks after the initiation of treatment) BMI for group receiving CSB was 18.4 kg/m?
and that of group receiving RUTF was 19.0 kg/m?. There was a significant difference
of BMI between the two groups of patients, t test 2.98, p value = 0.003. This means that
group receiving RUTF had higher BMI than group receiving CSB after 10 weeks of

treatment.
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Table 3: BMI for Patients Receiving CSB and RUTF at Different Times of

Follow up

BMI All participants | CSB RUTF T statistic | P value
Visit 0 mean(sd) | 16.7(1.4) 16.5(1.4) | 16.5(15) | 0.36 0.717
Visit 1 mean(sd) | 17.0(1.6) 17.0(1.5) [17.01.6) |0.01 0.992
Visit 2 mean(sd) | 17.6(1.8) 175(1.7) |17.718) [1.33 0.184
Visit 3 mean(sd) | 18.1(2.0) 17.8(1.8) |18.3(21) |2.38 0.018
Visit 4 mean(sd) 18.7(2.0) 18.4(1.8) | 19.0(2.1) 2.98 0.003

NOTE: 1.ttest compares BMI for participants who were receiving CSB and RUTF

2. BMI was measured in kg/m?

4.1.1 Distribution of Variables

Body mass index (BMI) and Hemoglobin level were normally distributed. Age was

skewed to the left, while CD4 count was highly skewed to the left, Refer Figure 1.
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Figure 1: Distributions of BMI, Age, Hemoglobin Level and CD4 Count
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Patients who were receiving CSB and RUTF had different variability in their

longitudinal profiles for the body mass index (BMI), refer Figure 2.

25

bmi

Figure 2: Subject Specific evolutions in time of Body Mass Index for CSB and

RUTF

There was no difference in the survival of patients in the first 2 weeks. After week 2,
the group that was receiving CSB has slightly higher survival than the group receiving
RUTF, refer Figure 3. But there was no significant difference in the survival between
patients who were receiving CSB and RUTF, using log rank test, Chi square= 0.9, 1

degree of freedom, p value = 0.342
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Figure 3: Kaplan Meier Graph for Participants Receiving CSB and RUTF

4.2 Survival Data Analysis

4.2.1 Time Dependent Cox Model

Results from Cox proportional hazards models with time dependent covariates are
presented in Table 4. The group that was given RUTF had a higher risk of death, HR
= 1.2, 95% CI (0.953, 1.511), however, this was not significant, p value = 0.120.
Body Mass Index (BMI) had effect on the survival of patients, HR = 0.636, 95% ClI
(0.592, 0.683), p value < 0.00001. This means that as BMI increases by 1kg/m? the
risk of death decreases by 36%. Male patients had a higher risk of death as compared
to female patients, HR= 1.4, 95% CI (1.116, 1.830), p value = 0.005. This means that

male had 1.4 times hazard of death as compared to women. Age of a patient had an
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effect on the time to death, HR = 1.02, 95% (1.003, 1.026), p value = 0.016. As the
age of person increased by 1 year, the hazard of death increased by 2 %. CD4 count
had no effect on the survival of patients, HR = 1.0, 95% CI (0.999, 1.001), p value =
0.235. Hemoglobin level of patient had effect on survival, HR = 0.80, 95% CI (0.753,
0.854), p value <0.0001, this means as the hemoglobin level of patient increases by 1
mg/dl, the hazard of death for that patient decreases by 20%. TB status of a patient
had no effect on survival of patients, HR = 1.08, 95% CI (0.968, 1.189), p value =
0.182. Receiving cotrimoxazole, had effect on survival of patients, HR = 0.36, 95%
Cl (0.287, 0.457) p value < 0.00001. Patients who were receiving cotrimoxazole had a
lower risk of death compared to patients who were not receiving cotrimoxazole.
Receiving cotrimoxazole reduces the hazard of death by 64%. Wald test had a value
of 275.5 and p value <0.0001. Also both Likelihood test and score (Log rank) test had
p value < 0.0001. All the three tests are significant, providing evidence that at least

one of the coefficients is significantly associated with the time to death of the patient.
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Table 4: Results from Cox Model with Time Dependent Covariates

Parameter Exp Std Error 95%  Confidence Z P value
(coefficient) Interval
Food type(RUTF) 1.201 0.118 (0.953, 1.511) 1.556 0.1197
BMI 0.636 0.037 (0.592,0.683) -12.394 <0.0001
Sex (Male) 1.429 0.126 (1.116, 1.830) 2.829 0.0047
Age 1.014 0.006 (1.003, 1.026) 2.414 0.0158
CD4 Count 1.000 0.0003 (0.999, 1.001) 1.189 0.2346
Hemoglobin 0.802 0.032 (0.753, 0.854) -6.845 <0.0001
TB 1.073 0.523 (0.968, 1.189) 1.335 0.1819
Cotrimoxazole (Yes) 0.363 0.119 (0.287,0.457) -8.555 <0.0001
Wald Test 275.3 P value < 0.0001
Likelihood Test 282.8 P value < 0.0001
Score(Log rank )Test  294.0 P value < 0.0001

4.3 Longitudinal Data Analysis

In order to assess the effects of BMI over a long period of time, mixed effects model
was fitted. Dependent variable was BMI. The mixed effect model was fitted with
random intercept and slope. Table 5 shows the results of this model. In the model,
type of food supplements has a coefficient of 0.160, which means that mean BMI of
group getting RUTF is 0.160 higher than BMI of group getting CSB. But these results
were not significant, p value = 0.2600. Sex of a person did not have effect in the

changes of BMI, p value = 0.2655. CD4 count did not have significant effect on BMI,

70



p value = 0.5298. Hemoglobin level had an effect in the changes of BMI. Increase in
BMI by 1kg/m? increases hemoglobin level of a patient by 0.0915, p value = 0.0085.
Receiving cotrimoxazole was not significant, p value = 0.9204. TB status of a person

did not have significant effect on the changes of BMI, p value = 0.0787.

Table 5: Results from Longitudinal Data

Parameter Estimate Std Error 95% CI P value
Intercept 14.956 0.430 (14.113,15.802) <0.00001
Time 0.458 0.014 (0.430,0.488) <0.00001
Food type 0.1601 0.142 (-0.119, 0.439) 0.2600
Sex -0.1702 0.153 (-0.470, 0.130) 0.2655
CD4 Count 0.0003 0.0005 (-0.0006, 0.0012) 0.5298
B -0.1264 0.07174 (-0.267,0.015) 0.0787
Cotrimoxazole 0.0155 0.1550 (-0.289,0.320 ) 0.9204
Hemoglobin 0.0915 0.034 ( 0.023, 0.159) 0.0085
Age 0.0183 0.007 ( 0.004, 0.032) 0.0103
AIC 6543.135

BIC 6604.816

Log likelihood -3260.567

Trajectories for the body mass index for the patients who were censored and those

who died were plotted. The trajectories are shown in Figure 4.
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Figure 4: Trajectories for Body Mass Index

4.4 Joint Modeling Results

Table 6 presents results for joint modeling. Type of food did not have effect on
survival of patient. This had a coefficient of 0.222 and a 95% confidence interval of
(13.707, 15.135). Sex of patient had significant effect on survival of patient,
coefficient = 0.507, 95% CI (0.150, 0.515). The hazard ratio was e®>°7 = 1.66. This
means male patients were at higher risk of dying than female patients. Age of patient
did not have significant effect on survival of participants, 95% CI (-0.012, 0.018).
Those patients who were receiving cotrimoxazole had lower risk of death as
compared to patients who were not receiving, coefficient = - 0.922,

95% CI (-1.391, -0.648). The hazard ratio (HR) was e~%9%2 = 0.398 . Receiving
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cotrimoxazole had an effect on time to death of patients. Patients who were receiving

cotrimoxazole had lower risk of death than patients who were not receiving.

Patients who had higher levels of hemoglobin had lower risk of death as compared to
patients with lower levels of hemoglobin, coefficient = - 0.274, 95% CI (-0.403, -
0.201). The hazard ratio (HR) was e~%2?7% = 0.761 . Hemoglobin level had an

effect on time to death of patients.

Table 6 also presents results longitudinal sub model. Type of food did not have
significant effect on BMI, 95% CI (-0.266, 0.218). CD4 count of a patient has effect
on BMI of the patient. Increase in BMI by 1 kg/m?, increases CD4 count by 0.001.
This was significant, 95% CI (0.0002, 0.0022). Receiving cotrimoxazole had no
effect on the BMI of the patient. Hemoglobin level had effect on the BMI of a patient.

In fact increase of BMI by 1 kg/m?, increases hemoglobin level of patients by 0.12.

In Table 6, the joint model the latent association, y is -0.178. The latent association
quantifies the effect of longitudinal outcome to the risk of death. In our case the latent
association measures the effect of body mass index (BMI) to the time to death. There
is significant association between BMI and survival of a patient, 95% CI (-0.241, -
0.141). The hazard ratio for increase the relation of BMI and survival of a patient is
0.84(e%178). Body Mass Index (BMI) had effect on the survival of patients HR =
0.84.This means that as BMI increases by 1 kg/m?, the risk of death decreases by
16%. Variance for random intercept was 1.76; variance for random slope was 0.21;

and residual variance was 0.35.
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Table 6: Results from Joint Model

Longitudinal Parameter Estimate Std 95% CI
Model coefficient Error
Intercept 14.492 0.376 (13.707, 15.135)*
Time 0.403 0.026 | ( 0.339, 0.450)*
Food type -0.003 0.124 (-0.266, 0.218)
Sex -0.039 0.135 | (-0.327,0.227)
Age 0.022 0.006 | (0.006, 0.034)*
CD4 Count 0.001 0.001 | (0.0002, 0.002)*
Cotrimoxazole 0.060 0.132 (-0.349, 0.282)
Hemoglobin 0.119 0.034 | (0.068, 0.187)*
B -0.143 0.075 | (-0.349, -0.023)*
Survival Model | Parameter Exp(coef) | Estimate Std 95% ClI
coefficient Error
Food type 1.245 0.223 0.152 | (-0.043, 0.515)
Sex 1.660 0.507 0.193 | (0.150, 0.890)*
Age 1.004 0.004 0.008 (-0.012, 0.018)
CD4 Count 0.997 -0.003 0.001 | (-0.002, 0.0003)
Cotrimoxazole | 0.398 -0.922 0.168 (-1.391, -0.648)*
Hemaoglobin 0.761 -0.274 0.046 (-0.403, -0.201)*
B 1.109 0.103 0.080 | (-0.081, 0.257)
Estimate Std 95% ClI
coefficient Error
Latent Association -0.178 0.026 | (-0.241,-0.141)
Variance for random intercept U, 1.764 0.144 ( 1.455, 2.001)
Variance for random slope U; 0.201 0.0181 | ( 0.163,0.234)
Residual variance 0.348 0.035 | (0.291, 0.415)
AIC 6443.14
BIC 6503.82
Log likelihood -3307.66

Note: *shows that results were significant

74




4.5 Comparison of Joint Models and Separate Models

Table 4 and Table 5 show results produced by separate models. Table 6 gives the
results from joint modeling. For instance, it was observed that some variables like
CD4 count and TB status did not have significant effect on body mass index (BMI) in
the separate model. However in joint model CD4 count and TB status had significant
effect on body mass index. It was also found age of patient had significant effect on
the survival of the person in the separate model; however in the joint model age was
not significant on the survival of a person. In the longitudinal, variables like age;
Hemoglobin; had effect on the body mass index of patients in both separate and joint
model. Also intercept and time were significant both in separate and joint models.
Type of food supplement, sex of person did not have significant effect on the body

mass index (BMI) in both separate and joint models.

In terms, of standard errors, most of variables in the joint model had smaller standard
errors as compared to the same variables in joint model. For instance, type of food
supplements had a standard error of 0.142 in separate model; and in joint model it had
standard error of 0.124. Also CD4 count, sex, TB status, use of cotrimoxazole had
smaller standard errors in joint model than in separate models, Refer Tables 5 and 6.
Most of variable in joint models in the longitudinal sub model had shorter range of
confidence intervals, Refer Tables 5 and 6. Narrow confidence intervals are more

desirable that wider confidence intervals.

The models were compared using log likelihood. Model produced by separate
longitudinal model had a log likelihood of -3260.57 and that of joint model was -

3140.66. Model produced by longitudinal model has AIC of 6543.135 and that of
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joint model had an AIC of 6443.14. Also separate longitudinal model had a BIC of
6604.812 as compared to 6503.82, which was BIC for the joint model. This suggests

that joint model had a better fit than separate model.

4.6 Assessment of Model Assumptions

The Cox proportional hazards model assumes that B(t) = B . The hypothesis H,f(t) =
B can be tested using the scaled Schonfeld residuals by an approximate score test
(Grambsch and Therneau 1994). The Schonfeld’s global test was used to test proportion
hazard assumptions. The “rho” estimates the correlation coefficient between survival
time and the scaled Schoenfeld residuals. The high p-value of more than 0.05 of the
score test implies no evidence against the assumption of proportional hazards. A p-
value of less than 0.05 of the test statistic (i.e., the model chi square, sometime
referred to as Wald chi-square in some packages) indicates a good model fit. Under
such a condition, the analyst concludes that the current model can reject the null
hypothesis that all the regression coefficients equal zero, and equivalently, at least one
coefficient that is not equal to zero. This means that there is no evidence against the
assumption of proportional hazard, p value = 0.360, Refer Table 7. Hence, the model
is acceptable.

Table 7 : Schoenfeld's Global Test Results

Variable rho Chi square P value
Food type 0.026 0.259 0.6174
Body mass index -0.091 2.857 0.0909
Sex -0.115 3.738 0.0532
Age 0.010 0.025 0.8752
CD4 lymphocyte count -0.040 0.527 0.4678
Hemoglobin level -0.006 0.015 0.9041
Tuberculosis 0.030 0.266 0.6060
Cotrimoxazole -0.033 0.327 0.5676
GLOBAL NA 8.802 0.3593
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Graphs for all the explanatory variables against survival time were fitted. All the
graphs show that the fitted lines (slopes) for the scaled Schoenfeld residuals for all
covariates are not significantly different from zero, See Figure 5. There the
assumptions of proportional hazards have been met. This is in line with results

obtained from the Schoenfeld global test.
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Figure 6 show homogeneity plots of residuals and Q-Q plots of residuals and of
random effects for the mixed effects random model. The plots of residuals show that
the assumptions of homogeneity and normality of the residuals have been met in the

mixed random effects model.

Homogeneity plot of Residus Q-Q Plot of Residuals
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Figure 6: Homogeneity Plots of Residuals and of Random Effects for Mixed
Effects Random Model
The Q-Q plot for longitudinal process of the joint model shows that the assumptions

of normality of the random effects have been satisfied, See Figure 6.

78



CHAPTER 5 DISCUSSION

Two groups of HIV positive patient who were receiving different food supplements
(CSB and RUTF) were compared using joint modeling approach and separate models.
It has been that shown the repeated measurement variable, body mass index is
significantly associated with time to an event, that is, survival of the patient. It has
also been shown that separate and joint models give different results. It is likely that
the results of joint modeling are more valid than single models, and that joint model
gives smaller standard errors of the estimates (Henderson et al., 2000; Ibrahim, 2010;

Nguti et al., 2005).

Corn Soya Blend and Fortified food did not have effect on the survival of the
malnourished HIV positive patients. Men who are HIV positive and malnourished are
at risk of dying as compared to women who are also HIV positive and malnourished.
Body mass index of HIV positive patients who are malnourished has significant effect
on the survival of patients. The lower the body mass index the higher the risk of
death. Use of cotrimoxazole had an effect on the survival of patients. Patients who
were not using cotrimoxazole had a higher risk of dying than patients who were using

cotrimoxazole.

Comparison of Cox proportional time dependent covariate and the join models reveals
some interesting features. In particular, body mass index, sex of person, hemoglobin
level, and use of cotrimoxazole have effect on the survival of patient both in Cox
proportional time dependent covariate and the joint models. Age of patient had
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significant effect on the survival of the person in the Cox proportional time dependent
covariate only and in joint model it was not significant. It has to be noted that joint
models are known to produce unbiased estimated (Nguti et al., 2005), however in the
joint model age was not significant on the survival of a person. Another difference
noted, was that most of variables in the joint model had smaller standard errors of the
estimates. This is an advantage of joint models over independent models (McCrink et

al., 2011).

Comparison of longitudinal process and joint model reveals that some variables which
were significant in the separate longitudinal model were not significant in joint model;
and some variables which were not significant in the separate longitudinal model
became significant in joint model. It was observed that variables like CD4 count and
TB status did not significantly affect body mass index (BMI) in the separate model.
However in joint model CD4 count and TB status had significant effect on body mass
index. In the longitudinal sub model, variables like age and hemoglobin level had
significant effect on the body mass index of patients in both separate and joint model.
Also intercept and time were significant both in separate and joint models. Type of
food supplement, sex of person did not have significant effect on the body mass index

(BMI) in both separate and joint models.

In terms of standard errors, most of variables in the joint model had smaller standard
errors as compared to the same variables in separate models. For instance, type of
food supplement, CD4 count, sex, TB status, and use of cotrimoxazole had smaller
standard errors in joint model than in separate models. This is in agreement with what

other researchers found. For instance, Henderson et al. (2000) reported that joint
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models produce smaller standard errors than separate models. Also in their study
Nguti et al. (2005) reported that standard errors produced by joint models were
smaller than standard errors in separate models. Nguti et al. (2005) further argued that
the smaller the standard errors the better the results. Most of variable in joint models
in the longitudinal sub model had shorter range of confidence intervals. Narrow

confidence intervals are more desirable that wider confidence intervals.
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CHAPTER 6 CONCLUSIONS

This chapter summarizes the study, gives some recommendations for analyzing
survival data which has repeated measurements variables, and the limitations of the

study.

6.1 Conclusion

Type of food supplement (CSB and RUTF) did not have effect on the survival of
patients. The relationship between body mass index and survival of person living with
HIV has been established. Body mass index has been shown to have significant effect
on the time to death of malnourished patients. When time to an event and the repeated
measurement variable are associated, separate models may produce biased results as
compared to joint models. Joint models, on average may produce smaller standard
errors. This research has shown joint models give better results than separate models,
when there is association between the repeated measurement and time to an event

variable.

6.2 Recommendations
When one has survival data with repeated measurement variable, and time to event is
associated with repeated measurement variable, it is recommended that joint modeling

of longitudinal and time to event data should be used.

Patients who are HIV positive and malnourished should be given food supplements in
order to improve their body mass index. Patients who are HIV positive and
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malnourished must be given treatment that increases levels of hemoglobin if they
have low hemoglobin levels. Patients who are receiving ART and are malnourished

must be given cotrimoxazole in order to reduce the risk of death.

6.3 Limitations of Study

The study used joint modeling of longitudinal and time to the event data. Longitudinal
sub model used linear mixed effect regression model and the survival sub model used
Cox proportional hazard model. The study used joint models with correlated error
structures. The study did not use flexible models that use semi parametric or non

parametric approach.
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APPENDICES

Appendix A: Commands used for data analysis in R

Data input

library (statmod)

library (foreign)

library (joineR)

data <- read.dta("C:\\Users\\User\\Desktop\\Data\\DataLong.dta")
names (data)

vV V. V V V #*

> data.long <- datal, c(1,2,16)]

> data.surv <- UniqueVariables(data, var.col = c("time to effect",
"status death"), id.col = "sfhiv")

> data.baseline <- UniqueVariables (data, var.col =
c(3,4,7,8,10,11,12), id.col = "sfhiv")

> data.jd <- jointdata (longitudinal = data.long, survival
data.surv, baseline = data.baseline, id.col = "sfhiv", time.col =
"time")

> summary (data.jd)

> plot (data.jd)

> take <- data.jd$survivalSsfhiv[data.jd$survivalSstatus death == 0]
> data.jd.cens <- subset (data.jd, take)

> takel <- data.jdS$survival$sfhiv([data.jd$survival$Sstatus death == 1]
> data.jd.uncens <- subset(data.jd, takel)

> par (mfrow=c(1,2))

> plot(data.jd.cens, Y.col ="bmi", main = "BMI: censored")

> plot(data.jd.uncens, Y.col ="bmi", main = "BMI: Failed")

> jointplot(data.jd, Y.col = "bmi", Cens.col = "status death", lag =
8,coll = "black", col2 = "gray", ylab = "BMI")

> jointplot (data.jd, Y.col = "bmi", Cens.col = "status death", lag =
3,coll = "black", col2 = "gray", ylab = "BMI")

> jointplot(data.jd, Y.col = "bmi", Cens.col = "status death", lag =
2,coll = "black", col2 = "gray", ylab = "BMI")

> jointplot(data.jd, Y.col = "bmi", Cens.col = "status death", lag =
3,coll = "black", col2 = "gray", ylab = "BMI")

> model.jointrandom <- joint(data.jd, bmi ~l+time+ foodtype + sexl +
age + cd40 + contro + hbO +TB, Surv(time to effect, status_death)
foodtype + sexl + age + cd40 + contro + hb0 +TB, model = "int")

> summary (model.jointrandom)

4

> names (model.jointrandom)

> summary (model.jointrandom, variance = FALSE)

> model.jointrandom.se <- JjointSE (model.jointrandom, n.boot = 100)

> model.jointrandom. se

# Fitting LME

> fitl=lme(bmi ~ time + foodtype + sexl +cd40+ TB+ contro+hbO+age,

random = ~1|sfhiv ,data = data, na.action =na.omit)
> summary (fitl)
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> fit2=1me (bmi ~ time + foodtype+ sexl +cd40 + TB+ contro+hbO+age,
random = ~time|sfhiv ,data = data,na.action=na.omit)
> summary (£fit2)

> fit3=1lme (bmi ~ time + foodtype + sexl +cd40 + TB+ contro+hbO+age,
random = ~ (time+I (time”2)) |sfhiv ,data = data, na.action=na.omit)
> summary (fit3)

# comparing models

anova (fitl, fit2)
anova (fitl, f£it3)
anova (fit2, f£it3)
anova (fit2, fitl)
ggnorm (fitl, ~ranef(.))
ggnorm (fit2, ~ranef(.))
ggnorm (fit3, ~ranef(.))

V VV VYV VYV

=+

Plotting Kaplan Meier Graph

> fitd4=survfit (Surv(time to effect,status_death)~foodtype,
type="kaplan-meier", data=c(data.jdS$survival,data.jdSbaseline))

>plot (fit4, lty=c(1l,2) ,mark.time=TRUE, col=c("red","blue"),xlab="years"
, ylab="Survival")

>plot (fit4, lty=c(l,2),mark.time=FALSE,col=c("red", "blue"),xlab="years
", ylab="Survival")

> legend(6,0.2,c("CSB", "RULTF"),lty=c(l,2),col=c("red","blue"))

# Kaplan Meier graph

> survdiff (Surv(time to effect,status death) ~foodtype
,data=c(data.jd$survival,data.jdsbaseline))
> survdiff (Surv(time to effect,status death) ~sex1l
,data=c(data.jd$survival,data.jdSbaseline))
> survdiff (Surv(time to effect, status death) ~contro

,data=c(data.jd$survival,data.jdsbaseline))
# Fitting Cox proportion hazard model

> fitS=coxph (Surv(time to effect,status death)~foodtype,
data=c(data.jd$survival,data.jds$baseline))

> summary (£it5)

Call:

> fitbS=coxph (Surv(time to effect,status death)~foodtype + sexl +age
+contro+ cd40 +hb0, data=c(data.]jdS$survival,data.jdSbaseline))
> summary (£it5)

> cox.zph(fit5, transform="identity")

> ran=random.effects (fit2)

> U=ran/[,l]l+ran([, 2]

> fit7=coxph (Surv(time to effect,status death)~foodtype+U,
data=c (data.jdS$Ssurvival,data.jdSbaseline))

> summary (fit7)

> fitl0 <- joint(data.jd, bmi ~l+time+ foodtype + sexl + age + cd40 +
contro + hbO +TB, Surv(time to effect, status death) ~ foodtype +
sexl + age + cd40 + contro + hb0O +TB, model = "intslope")

> summary (fitl10)

> fitl0O.se<- jointSE(£fitl0,n.boot=100)

> fitlO0.se
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# Putting in a format for Cox model for Time dependent covariates

> datacox <- read.dta("C:\\Users\\User\\Desktop\\Data\\datacox.dta")
> sum(!is.na(datacox[,25:29]))

[1] 2022
> datacox.2 <- matrix (0, 2022, 28) # to hold new data set
> colnames (datacox.?2) <-c('start', 'stop', 'event.time',

names (datacox) [1:24], 'bmi'")

> row <-0 # set record counter to O

> for (i in l:nrow(datacox)) { # loop over individuals

+ for (J in 25:29) { # loop over 14 weeks

+ if (is.na(datacox[i, J])) next # skip missing data

+ else {

+ row <- row + 1 # increment row counter

+ start <- j - 25 # start time (previous week)

+ stop <- start + 1 # stop time (current week)

+ event.time <- if (stop == datacox[i, 1] && datacox[i, 2] ==1) 1
else O

+ # construct record:

+ datacox.2[row,] <- <c(start, stop, event.time, wunlist(datacox[i,
c(1:24, §)1))

+ 11}

> datacox.2 <- as.data.frame (datacox.2)

> remove (i, J, row, start, stop, event.time) # clean up

# Fitting Cox model with Time dependent covariates

> mod.cox.4 <-coxph (Surv(start, stop, status) ~ foodtype + bmi +sexl+
age + cd40 + hb0O + TB + contro,data=datacox)
> summary (mod.cox.4)

# Model Building: Linear Mixed Effects Regression model

# Data input

> model .mixed <-
read.dta ("C:\\Users\\User\\Desktop\\Data\\DataLong.dta")

> library(lattice)

> library(nlme)

> attach (model.mixed)

#Distribution for body mass index

> hist(bmi , col =" darkgray ")

> xyplot (bmi ~time ,data , type ="1", xlim =c(l1 ,3) , main ="A
Trajectory plot of Body Mass Index ")

> xyplot ( bmi ~ time |[sfhiv ,model.mixed, type ="1", subset =(sfhiv

< 31) ,strip =FALSE , main =" Individual plots (for the first 30
Patients ) ")

> mod.mixed.l <-Ime( bmi~ foodtype + sexl + time + cd40 + hbO+ TB +
contro, random = ~ time |sfhiv , data = model .mixed ,

na.action=na.omit)
> summary (mod.mixed.1)
> intervals (mod.mixed.1)

#Testing normality of random effects

> par (mfrow =c (1 ,2))
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> fitted.values <- fitted(mod.mixed.1l)
> standardized.residuals <-residuals (mod.mixed.1l)

> plot(fitted.values , standardized.residuals , main ="Homogeneity
plot of Residuals")
> abline (h=c(-1.96%* sd(standardized.residuals),0,1.96%*

sd(standardized.residuals)))

ggnorm (standardized.residuals , main ="Q-Q Plot of Residuals")
abline (0, sd(standardized.residuals))

eblups <-as.vector (unlist (ranef (mod.mixed.1l)))

ggnorm (eblups , main ="Q-Q Plot of Random Effects ")

abline (0, sd(eblups))

vV V V V V
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